The ATLAS ITk Strip Detector for the LHC Phase-II Upgrade

Mengke Cai

on behalf of China ATLAS-ITk

ATLAS-ITk in LHC Phase-II

- LHC Phase-II (HL-LHC) upgrade
- > Instantaneous **luminosity** up to 7.5×10^{34} cm⁻²s⁻¹
- > Integrated **luminosity** up to $3000 \sim 4000 \text{ fb}^{-1}$
- > Collision center-of-mass energy up to $\sqrt{s} = 14 \text{ TeV}$
- ➢ Up to 200 inelastic pp collision per beam crossing (pileup)
- > 10 times higher radiation
- All-silicon Inner Tracker (ITk)
- Higher granularity / Larger coverage / Faster response
- Higher radiation tolerance
- Reduced material budget

中国物理学会高能物理分会第十四届全国粒子物理学术会议 山东青岛 —— 2024年8月14日

ITk Strip Layout

Barrel — IHEP site

- ➤ 4 layers (each double sided)
- ▶ L0 / L1 (inner) with short strip (SS) staves
- \succ L2 / L3 (outer) with long strip (LS) staves

Endcap

- ➢ 6 disks (double sided) at each end
- > 32 identical **petals** on each disc

ITk Strips	Layers	Staves/Petals	Modules	Surface [m ²]	Channels [M]	Strip pitch [µm]	Strip length [mm]
Barrel	4	392 Staves	10976	104.86	37.85	75.5	24.1 - 48.2
Endcap	6	384 Petals	6912	60.4	22.02	69.0 - 85.0	19.0 - 60.0

中国物理学会高能物理分会第十四届全国粒子物理学术会议 山东青岛——2024年8月14日

Detector Element

Module

> Sensors

LS: 48.2 mm strip / SS: 24.1 mm strip

> Hybrid

- ABCStar frontends binary readout chip
- HCCStar hybrid controller chip

> Powerboard

- AMACStar monitoring & controller
- HVMux HV switch and multiplexer
- DCDC

Δ

Detector Element

Staves

of High Energy Physics, Chinese Academy of Sciences

- Modules are loaded to **Staves**
 - Carbon-fibre mechanical support •
 - Copper-Kapton bus tape (pow. / com.) •
 - Titanium **cooling tubes** (evaporative CO₂) •
- **End-of-Substructure (EOS) Card**
 - Interface between stave and off-detector •
 - lpGBTx (Low Power GigaBit Transceiver) •

山东青岛-

VTRx+ (optical transceiver module) .

Production Flow

- For Module Production
- Hybrid Assembly
- Module Assembly
- Quality Control

- IHEP Site Qualifications
- > 29 steps qualified for **barrel module** production
- > 10 % of production (~ 1k modules) allocated to IHEP

6

Hybrid Assembly

Procedure

- ASICs attachment and wire-bonding
 - ASICs adhesive: Acrylic UV glue
 - Glue coverage controlled by weight and thickness
 - Wire-bonding with a Hesse Bondjet
 - Examine wire-bonding flaws by visual inspections
- Electrical performance test and Burn-in
 - E-test under heat stress 100 hour at $40 \pm 5^{\circ}$ C

Check C. Wang's Poster about E-testing in ITk, No. 5-23

中国物理学会高能物理分会第十四届全国粒子物理学术会议

山东青岛

- 2024年8月14日

Quality control

of High Energy Physics, Chinese Academy of Sciences

Glue weight, metrology, visual Inspection, burn-in

Module Assembly

Procedure

- Hybrid / Powerboard attachment and wire-bonding
 - Hybrid & PB adhesive: Epoxy
 - Bond 256 Al wires in 4 rows per ABCstar chip FE
 - Examine module envelope, positions of hybrid & PB, sensor bow
- Electrical performance test and Thermal cycling
 - Ten $(-35 \rightarrow 20 \rightarrow -35 \text{ °C'})$ thermal cycles with E-tests

Check C. Wang's Poster about E-testing in ITk, No. 5-23

中国物理学会高能物理分会第十四届全国粒子物理学术会议

- 2024年8月14日

山东青岛

Quality control

of High Energy Physics, Chinese Academy of Science.

Glue weight, metrology, visual inspection, thermal cycle

Quality Control

Glue weights

- ASICs-to-hybrid glue dispensing by a CNC dispensing system \geq
 - weighting with a digital scale
 - \rightarrow 43.8 ± 2.62 mg for ASIC adhesive weight
- Hybrid / PB -to-sensor gluing by stencils
- Metrology

of High Energy Physics, Chinese Academy of Science.

- Geometric positioning of characteristics
 - Hybrid package thickness, ASIC positions, tilts

山东青岛

> Module envelope, sensor bowing

Quality Control

- Glue weights
- > ASICs-to-hybrid glue dispensing by a CNC dispensing system
 - weighting with a digital scale
 - > 43.8 ± 2.62 mg for ASIC adhesive weight
- > Hybrid / PB -to-sensor gluing by stencils
- Metrology
- Geometric positioning of characteristics
 - Hybrid package thickness, ASIC positions, tilts
 - Module envelope, sensor bowing

10

Quality Control

Visual Inspection

Check for any defects on hybrid flex, e.g. on SMDs and bonding pads

山东青岛

- Check for ASICs >
 - Integrity of surface / edges for ASICs
 - cleanness on bonding pads \triangleright
- Check for sensor
 - Any scratches / marks / debris on sensor
 - Integrity of edge
 - broken sensor

Towards Production

Sensor cracking

of High Energy Physics, Chinese Academy of Science.

- High rate of HV-failing due to sensor cracking
 - mainly at interval between hybrid & PB \geq
 - during thermal cycling
- FEA simulation indicates a issue of **CTE mismatch** \geq
 - different CTE 'bi-metallic' effect
 - bonded sensor create local bending intensified stress

山东青岛

- peak stress after 1st cold cycle: 150 ~ 200 Mpa
- stress due to 'flattening' sensor bowing: ~ 25 MPa

Towards Production

- Sensor cracking Mitigation
- > Interposer
 - 50 um & soft glue reduce ~ 90% stress !
 - SE4445 (silicone) as glue, Kapton as interposer
- ➢ i-(Interposed)Hybrids and iPowerboards assembled at IHEP
 - Metrology measurement for monitoring interposer thickness
 - Update our pre-production phase with iModule
- Production phase
 - Receive iHybrid / iPB from hybrid flex sites

中国物理学会高能物理分会第十四届全国粒子物理学术会议 山东青岛——2024年8月14日

Thank you !

Backup

Logistic Flow

中国物理学会高能物理分会第十四届全国粒子物理学术会议 山东青岛——2024年8月14日

Backup

e of High Energy Physics, Chinese Academy of Sciences

Interposer -- IHEP

- Interposed Hybrids and Powerboards assembled
 - ➢ 3 i-(interposed)hybrids and iPB
 - Interposer layer thickness measurement with metrology \triangleright
 - Update our pre-production phase with iModule

山东青岛-

- 2024年8月14日

