Imaginary potential of heavy quarkonia in rotating matter from holography

Zi-Qiang Zhang

China University of Geosciences (Wuhan) (Collaborators: DeFu Hou, XiangRong Zhu)

Motivations

- AdS/CFT correspondence (holography)
- Imaginary potential in rotating matter
- Conclusion and outlook

- The QGP is the hottest and the less viscous (or almost perfect) fluid ever created in nature
- The QGP is strongly coupled and thus calculational tools for non-perturbative methods are needed
- The holographic calculations, $\eta/s = 1/4\pi$, being at least one order of magnitude smaller than perturbative calculations

AdS/CFT correspondence (holography) Added the second seco

Adv. Theor. Math. Phys. 2 (1998) 231–252 Adv. Theor. Math. Phys. 2 (1998) 253–291 Phys. Lett. B428 (1998) 105–114

N = 4 SYM on the boundary \Leftrightarrow Type IIB string theory in the bulk

^{混豪寶} 求真务 賓

$$\lambda \equiv N_c g_{YM}^2 = \frac{1}{{\alpha'}^2} \quad (\text{string tension} = \frac{1}{2\pi\alpha'})$$
$$\frac{\lambda}{N_c} = 4\pi g_s$$
$$< e^{\int d^4 x \phi_0(x) O(x)} > = Z_{\text{string}} [\phi(x,0) = \phi_0(x)]$$

In the limit $N_c \to \infty$ and $\lambda \to \infty$ $Z_{\text{string}} [\phi(x,0) = \phi_0(x)] = e^{-I_{\text{sugra}}[\phi]} |_{\phi(x,0) = \phi_0(x)}$ $I_{\text{sugra}}[\phi] = \text{classical supergravity action}$

混豪寶 求 去 考 実 素

AdS/CFT correspondence (holography) * ***

The AdS/CFT dictionary

AdSd	(d – 1)-dimensional Gauge Theory	Description	
1	$\sqrt{\alpha' \lambda^{1/4}}$	Radius of curvature of AdS _d and S ^d	
ls	$\sqrt{\alpha'} \equiv \lambda^{-1/4} l$	Fundamental string length scale	
To	$1/2\pi\alpha'$	String tension	
$(l/\ell_s)^4$	λ	't Hooft coupling ^a	
r _H	$4\pi l^2 T/(d-1)$	Radial position of the black hole horizon	
$(d-1)r_H/4\pi l^2$	$T \equiv 1/\beta$	Temperature of the gauge theoryb	
$r_c \equiv (r_s + \ell_0)$	$2\pi \alpha' (M_{\text{rest}} + \Delta m)$	Minimal radius of D7-brane ^c	
T ₀ r _H	$\Delta m(T)$	Thermal rest mass shift	
$T_0(r_c - r_H)$	$M_{\rm rest}(T)$	Static thermal mass of external particled	

AdS/CFT correspondence (holography) + ak k * *

QCD vs N=4 SYM

	QCD	SYM
	3	>>1
t'Hooft coupling	5.5-18.8	>>1
Quarks	Fundamental	Adjoint
Conformal symmetry	No	Yes at zero T
Comornial Symmetry		No at nonzero T
Supersymmetry	No	Yes at zero T
Supersymmetry		No at nonzero T

- A useful probe of the QGP involves quarkonium (QQ). For a long time, it was believed that the suppression of quarkonium production in HICs probes the Debye screening of the potential.
 However, systematic studies using thermal field theory showed
 - that in addition to the Debye screening, the in-medium $Q\overline{Q}$
 - potential also develops a thermal imaginary part, which is a
 - reflection of quarkonium dissociation[JHEP 03 (2007) 054]

the QGP produced in (typical) noncentral heavy-ion collisions

may carry a nonzero angular momentum (related to colliding

nuclei) on the order of 10^4 - 10^5 with local angular velocity in the

range of 0.01-0.1GeV

The STAR Collaboration, Nature 548 (2017) 62-65. Z.T. Liang, X.N. Wang, Phys. Rev. Lett. 94 (2005) 102301; 96 (2006) 039901(E). F. Becattini, F. Piccinini, J. Rizzo, Phys. Rev. C 77 (2008) 024906. X.G. Huang, P. Huovinen, X.N. Wang, Phys. Rev. C 84 (2011) 054910. L.G. Pang, H. Petersen, Q. Wang, X.N. Wang, Phys. Rev. Lett. 117 (2016) 192301.

An understanding of how the computations are affected by angular velocity may be essential for more precise theoretical predictions

We here consider the imaginary potential of $Q\overline{Q}$ from thermal fluctuations in a holographic QCD model (i.e., a soft wall model)

and

 analyze how angular velocity affects imaginary potential and quarkonia dissociation

^{混豪寶} 求其务 実

We employ a type of soft wall model, whose background is

$$\begin{split} ds^2 &= \frac{r^2 h(r)}{R^2} [-f(r) dt^2 + dx^2 + dy^2 + dz^2] + \frac{R^2 h(r)}{r^2 f(r)} dr^2, \\ f(r) &= 1 - \frac{r_h^4}{r^4}, \qquad h(r) = e^{c^2 R^4/r^2}, \end{split}$$

where R is the AdS radius (hereafter we set R = 1). r denotes the fifth coordinate. The boundary is $r = \infty$. The event horizon is $r = r_h$, defined by $f(r_h) = 0$. h(r) is the warp factor, determining the characteristics of the soft wall model. c refers to the deformation parameter, determining the deviation from conformality.

Next, we extend the metric to a rotating case by operating a Lorentz boost in the \$t-\phi\$ plane

$$t \to \gamma(t + \omega l^2 \phi), \qquad \phi \to \gamma(\phi + \omega t), \qquad \gamma = \frac{1}{\sqrt{1 - (\omega l)^2}},$$

where \$\phi\$ is the angular coordinate describing the rotation. \$\omega\$ is the angular velocity. \$I\$ is the radius of the rotating axis. For ease of calculation, we will take \$I=1GeV^{-1}\$

The Hawking temperature of the black hole is

^{混豪寶} 求其务 実

$$T = \left|\frac{\lim_{r \to r_h} \frac{1}{2}\sqrt{\frac{g^{11}}{-\hat{g}^{00}}\hat{g}_{00,1}}}{2\pi}\right| = \frac{r_h}{\pi}\sqrt{1-\omega^2}.$$

The expectation value of the static (temporal) Wilson loop is given by

$$W(C) = \frac{1}{N_c} Tr P e^{i \int A_\mu dx^\mu}, \qquad \langle W(C) \rangle \sim e^{i \mathcal{T} V_Q Q}.$$

According to AdS/CFT, the $\langle W(C) \rangle$ in a strongly coupled gauge theory

 $< W(C) > \sim Z_{str},$

On the other hand, in the supergravity limit,

混豪寶 求其务 實

$$Z_{str} \sim e^{iS_{str}},$$

Next, we study the Imaginary potential from using thermal fluctuations

$$r(x) = r_c(x) \to r(x) = r_c(x) + \delta r(x),$$

^{混豪寶} 求其务 実

J. Noronha, A. Dumitru, Phys. Rev. Lett. 103 (2009) 152304.

FIG. 1: The thermal fluctuations (dashed line) around the classical configuration (solid line).

where $r_c(x)$ solves $\delta S = 0$. Fig. 1 shows a diagram describing thermal fluctuations, one can see that if r_* is close enough to the horizon, the fluctuations of long wavelength may reach it.

^{混豪寶} 求其务 賓

Result 1: increasing ω , the inter-quark distance becomes shorter

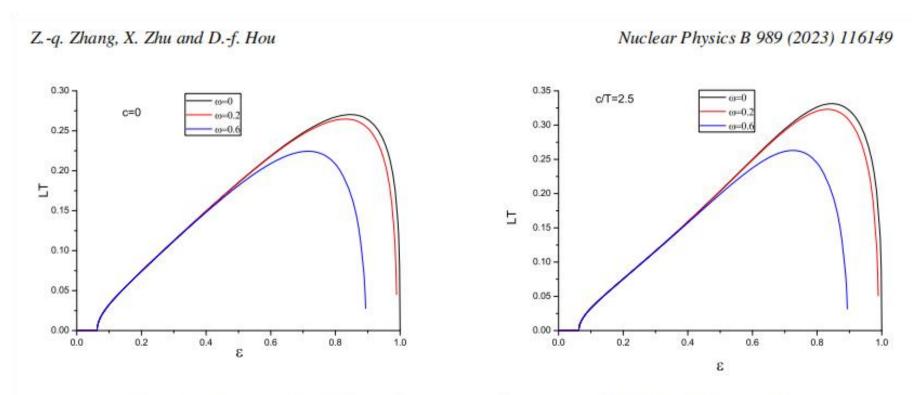


Fig. 2. Left: LT versus ε , in both panels from top to bottom, $\omega = 0, 0.2, 0.6$ GeV, respectively.

^{混豪寶} 求真务 賓

Result 2: increasing ω , the onset of ImV/($\sqrt{\lambda}T$) happens at smaller LT, implying the suppression will be stronger

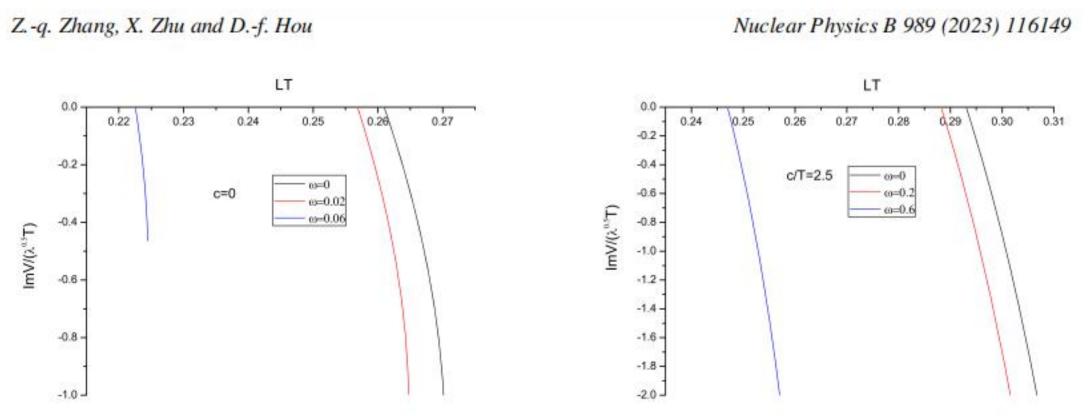


Fig. 4. Im $V/(\sqrt{\lambda}T)$ versus LT, in both panels from right to left, $\omega = 0, 0.2, 0.6$ GeV, respectively.

- An understanding of how the computations are affected by angular velocity may be essential for more precise theoretical predictions
- **By** increasing ω , the inter-distance of $Q\overline{Q}$ decreases
- The presence of ω decreases the onset of imaginary potential thus enhancing quarkonia dissociation

- The results are in agreement with previous findings for the moving $Q\overline{Q}$ case S.I. Finazzo, J. Noronha, J. High Energy Phys. 01 (2015) 051
- Final conclusion from imaginary potential: moving or rotating quarkonia dissociate easier than the static case
- Outlook: are the results consistent with

other rotation schemes? (e.g. Kerr-AdS)

other dissolution mechanisms? (e.g. entropic force etc)

^{混豪寶} 求真务 賓

Thanks

Hope your comments and criticism