
TRACCC在CEPC顶点探测器中的应用

YiZhou Zhang, Xiaocong Ai, Tao Lin, WeiDong Li

zhangyz@ihep.ac.cn

15th Aug 2024

mailto:zhangyz@ihep.ac.cn


Outline

1 Introduction

2 CEPC Geometry in ACTS

3 Seeding algorithm for CEPC

2

4 Integration of TRACCC with CEPCSW



3

Circular Electron Positron Collider (CEPC)  
The CEPC is a future experiment mainly designed to 

precisely measure the Higgs boson’s properties and search 

for new physics beyond the Standard Model.

• At 250 GeV:  Higgs bosons are produced (4 × 106)

• At 160 GeV:  W bosons are produced (> 108)

• At 90 GeV:    Z bosons are produced (> 4 × 1012)

*The Conceptual Design Report (CDR) has been 

completed in Oct. 2018. And the Technical Design Report 

(TDR) is now being written. 

ACTS Common Tracking Software
ACTS是一个用于高能物理和核物理实验带电粒子径迹重建，
不依赖于特定的实验装置的软件包。
ACTS documents: https://acts.readthedocs.io/

TRACCC is one of ACTS R&D projects, providing full chain 

demonstrator for track reconstruction on accelerators.

This Contribution
We plan to apply ACTS’ reconstruction tool in the reference 

detector of TDR, and to compare its performance with our origin 

reconstruction algorithm.

This Contribution will introduce the integration of ACTS & 

TRACCC with CEPC software (CEPCSW) environment.

Code working in progress:

https://code.ihep.ac.cn/zhangyz/cepcsw-acts/-

/tree/master/Reconstruction/InDetActsTracking

Layout of the CEPC baseline tracker (CDR)

1 Introduction

CEPC探测器重建面临
的挑战:

• 多事例堆积
• 高束流本底（Z能区）
• 高数据采集率

https://acts.readthedocs.io/
https://code.ihep.ac.cn/zhangyz/cepcsw-acts/-/tree/master/Reconstruction/InDetActsTracking


4

TRACCC & SYCL
使用SYCL编写的径迹重建算法，是TRACCC的主要开
发方向之一。
SYCL is a high-level C++ programming model. An 

uniformed written code can run on a variety of platforms.

* High Portability and Programming Efficiency 👆

TRACCC is developing track reconstruction algorithm 

using SYCL. Its track finding algorithm is not finished yet.

CEPC software (CEPCSW) environment
Applications: simulation, reconstruction and analysis

Core software: 

• framework: Gaudi

• detector description tool: DD4hep

• event data model: EDM4hep

• event data manager: k4FWCore

• Other CEPC-specific components

Status of TRACCC
CEPCSW structure

Integration of TRACCC
Imply the seeding algorithm for the 

VTX detector based on TRACCC 

in the CEPCSW environment.

1 Introduction



5

1 Introduction

Overview of This Contribution
• Integration of ACTS’ full silicon track reconstruction algorithm & 

TRACCC’s seeding algorithm on VTX detector with CEPCSW

Steps:

① Convert the CEPC geometry to ACTS format

② Extend the seeding algorithm for CEPC VTX detector structure

③ Integration of ACTS & TRACCC with CEPCSW

Integration of ACTS & TRACCC

CEPC VTX: three layers, both sides of which are mounted with silicon 

pixel sensors

ACTS & TRACCC: three layers with single-sided silicon pixel sensors 

The X–Y projection of the VTX

Layout of CEPC VTX detector



Outline

1 Introduction

2 CEPC Geometry in ACTS

3 Seeding algorithm for CEPC

6

4 Integration of TRACCC with CEPCSW



7

Geometry Conversion
① Convert the CEPC geometry file (in DD4hep format) to tgeo format.

② Write the config file to specify the volumes (VXD, SIT, and FTD) that needs to 

be generated.

③ Use ACTS’ tgeo reader to generate csv files.

④ Write the digitization config file to provide the segmentation information of 

each surface. 

⑤ *Verification: Use Fast ATLAS Track Simulation (FATRAS) & ACTS’ 

digitization tool to produce full simulation information and generate cells.

The correctness of the geometric transformation is verified.

①

②

④

⑤

③

2 CEPC Geometry in ACTS

FATRAS generates hits in z-r plane

VXD + SIT + FTD (layer 0-3)



8

Material mapping
为了提高重建效率，ACTS在重建时使用简化的material。
将原本复杂的material被映射到tracking geometry的不同表面上。
ACTS’ material mapping includes 3 steps：
① Create a JSON file: 

• configure which surface the material is mapped onto and with which binning.

② Geant4 simulation: 

• collect the material inside the detector from the detailed geometry.

③ Mapping: 

• all the steps are projected onto the closest surfaces (or volume) and averaged out 

over many events to create a map.

2 CEPC Geometry in ACTS

CRD_o1_v01.xml

DD4hep

CRD_o1_v01.tgeo.root

tgeo

CRD_o1_v01_config.json

json geometry-map.json

json
Acts geometry

geant4_material_tracks.root

root
Geant4 simulation ②

①

Mapping
material.json

json

③

Validation

Validation of Material Mapping

VXD + SIT + FTD (layer 0-3)

η



9

2 CEPC Geometry in ACTS

Gid Conversion
CEPCSW & ACTS 使用不同的geometry id。因此，为了在重建时获取
正确的module信息，需要把CEPCSW的cellid转化为acts的gid.

VXD CEPCSW cellid:
Layer: {0,1,2,3,4,5}    # Indicate 6 layers from inside to outside

Module: {  L0: 0-9, L1: 0-9,
L2: 0-10, L3: 0-10,
L4: 0-16, L5: 0-16}   # Indicate ladders in the φ direction

Sensor: 0
Barrelside: 1 for z > 0 else -1   # one ladders has 2 sensors separated by z

VXD ACTS gid:
Volume: {23}
Boundary: 0

Layer: {2, 4, 6} # adjacent layers are too close, so being treated as the same layers

Approach: 0
Sensitive: {L2: 1-40, L4: 1-44, L6:1-68}
The sensitive counts from z>0 to z<0, then counts in φ direction (the order is same to 
CEPC), and then counts from inner to outer layers.

Generated hits of CEPC VXD by Geant4

ACTS volume ids of VXD + SIT + FTD 



10

2 CEPC Geometry in ACTS

Gid Conversion
In CEPCSW, the outermost layer of SIT is considered in drift chamber.

We now only consider the inner 3 layers.

SIT CEPCSW cellid:
Layer: {0,1,2}   # Indicate 3 layers from inside to outside

Module: {L0: 0-14, L1: 0-27, L2: 0-39}  # Indicate ladders in the φ direction

Sensor:  {L0: 0-9, L1: 0-14, L2:0-21} }  # Indicate sensors in the z direction

Barrelside: 0

SIT ACTS gid:
volume: {25, 28, 31} # Indicate 3 layers from inside to outside

Boundary: 0
Layer: 2
Approach: 0
Sensitive: {vol25: 1-150, vol28: 1-420, vol31:1-880}
The sensitive counts in z direction (range z from large to small), then counts in φ 
direction (the order is same to CEPC), and then counts from inner to outer layers.

ACTS volume ids of VXD + SIT + FTD 

Generated hits of CEPC SIT by Geant4



11

2 CEPC Geometry in ACTS

Validation of Gid Conversion 
1. We get the global & local position of EDM4hep::TrackerHit.

2. Give the local position & converted Gid to Acts::Surface, if 

the gid conversion is correct, Acts::Surface can get the 

correct global position.

The conversion has been validated.

Converter for VXD gid Converter for SIT gid

Code to check Gid Conversion



Outline

1 Introduction

2 CEPC Geometry in ACTS

3 Seeding algorithm for CEPC

12

4 Integration of TRACCC with CEPCSW



13
Triplets Finding

Seed Formation

6-layers seeds finding
2 methods of modify the TRACCC 

algorithm to be suitable for 6-layers 

CEPC geometry.

1.  Triplets Finding: 

Before seeding, treating adjacent 

layers as one layer, and considering 

nearby space-points in two layers as 

one-space point.

2.  Seed Formation: 

After seeding, combine the found 

triplets that sharing the same space-

points into a “big” seed.

We have implied Seed Formation in 

TRACCC.

3 Seeding algorithm for CEPC



7

3

14

6-layers seeds finding: Seed Formation steps in GPU
For each middle space point in parallel:

1. pick the triplet with the lowest impact params (𝑑0) among all the triplets where the middle sp is located

2. find the bottom sp & top sp that are closest to the bottom sp & top sp of the current triplet

3. form a new seed of 5 points and sort them according to their radius (distance to the origin of coordinates)

Z

r

0

L1

L2

L3

L4

L5

L6

Hit

Found triplets

1

2

4

5

6

In GPU

Example:

Paralleling for hit 3 👉

bottom middle top

1 3 5

lowest 𝑑0 1 3 6

1 3 7

2 3 5

2 3 6

2 3 7

Bot_inner Bot_outer Mid_inner Mid_outer Top_inner Top_outer

1 2 3 3 5 6

Paralleling middle sp

{1，2}

1.radius() < 2.radius() 

{5，6} | {7, 6}

5.radius() < 6.radius() 

3 Seeding algorithm for CEPC



4

7

3

15

6-layers seeds finding: Seed Formation step in CPU
Iterate through all new 5-points seeds:

if two seeds have the same bottom sp & top sp, merge both into hexaplets (6-layers seeds)

Z

r

0

L1

L2

L3

L4

L5

L6

Hit

Found triplets

1

2

5

6

middle sp

Bot_inner Bot_outer Mid_inner Mid_outer Top_inner Top_outer

1 2 4 4 5 6

Bot_inner Bot_outer Mid_inner Mid_outer Top_inner Top_outer

1 2 3 3 5 6

In CPU

For hit 3 👇

For hit 4 👇 ＋

Bot_inner Bot_outer Mid_inner Mid_outer Top_inner Top_outer

1 2 3 4 5 6

{3，4}

3.radius() < 4.radius() 

3 Seeding algorithm for CEPC



Outline

1 Introduction

2 CEPC Geometry in ACTS

3 Seeding algorithm for CEPC

16

4 Integration of TRACCC with CEPCSW



17

EDM4hep::

SimTrackerHit

CEPCSW
Alg

TRACCC
package

traccc::wrapper

EDM4hep::

Track

Package the seeding algorithm
• Write a wrapper to wrap the seeding functions that CEPCSW needed.

• Calling the TRACCC package in CEPCSW alg.

• Pull request: https://github.com/cepc/CEPCSW/pull/270

Avoid the overhead from data copy
• We want TRACCC be able to use the hits data simulated by G4 directly !!

• EDM4hep and *VecMem may use the same memory.

Copy?

* TRACCC uses VecMem as the 

vectorised data model across multiple 

device types.

4 Integration of TRACCC with CEPCSW

https://github.com/cepc/CEPCSW/pull/270


18

Modify the EDM4hep
We want EDM4hep & VecMem use the same storage format 

(std::pmr::vector),

So TRACCC can directly use the hit data with no data-copy.

Add Collection layer interfaces:

Add CollectionData layer interfaces:

Modify the DataContainer storage format (vector → pmr::vector) 

Layout of the PODIO storage format

Modify the data storage format of PODIO
EDM4hep is generated by PODIO,

so we modify the DataContainer of PODIO:

We add interfaces to get pmr::vector directly.

4 Integration of TRACCC with CEPCSW



19

In CEPCSW alg

• The address of pmr::vector

does not changed.

• No data copy occurs.
In TRACCC alg

Running in CEPCSW

Customized EDM4hep data collection
• Define a data collection whose member is totally the 

same with the EDM of TRACCC

• So we can directly use edm4hep::ACTSCells as the input 

of TRACCC.

edm4hep.yaml

Verification
• Now TRACCC can directly read the simulated hits from Geant4 

which is stored in EDM4hep format.

• No non-essential data-copy occurs.

4 Integration of TRACCC with CEPCSW



20

Geant4 simulation (1 event, 50 tracks) TRACCC reconstruction

Verification of the seeding algorithm
Simulated mu- of 100 Gev in Geant4, and reconstructed in TRACCC

*The yellow and red parts of the simulation do not have hits in the outermost layers (layer 4/5)

*The blue part G4 produced secondary particles (e-).
tracks are found correctly!

4 Integration of TRACCC with CEPCSW



21

Seeding efficiency evaluation
Particle: mu- Energy: 5 Gev

Computing evaluation of TRACCC seeding 
Run TRACCC in heterogeneous device:

• CPU: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz

• GPU: NVIDIA Corporation TU102GL [Quadro RTX 8000] 

4 Integration of TRACCC with CEPCSW

Track efficiency with θ

𝑡𝑟𝑎𝑐𝑘 𝑒𝑓𝑓 =
𝑁𝑟𝑒𝑐 𝑡𝑟𝑎𝑐𝑘𝑠
𝑁𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑐𝑘𝑠

Material effects track efficiency at low θ angle.

Difference between rec and sim track param
Track parameters include qoverp, d0, z0, theta, phi



22
4 Integration of ACTS with CEPCSW

Seeding Alg

Track Params Estimation

CKF

Get Acts::TrackingGeometry

Seeds

InitialTrackParameters

Track & Track State

SourceLinks

Measurements

SpacePoints

GaudiAlgorithm::initialize()

GaudiAlgorithm::execute()

GaudiAlgorithm::finalize()

EDM4hep::
TrackerHitGid

conversion

Global 3D position
& Variance in Rho & Z

Local 2D position
& Variance in loc0 & loc1

TGeo root file

TGeo config file

material map file

Gaudi Algorithm View
Initialize: read the CEPC geometry, 

get the Acts::TrackingGeometry.

Execute: read the EDM4hep::

TrackerHit of current event, 

generate SpacePoints & 

measurements, and store the 

connection between ModuleGid & 

meas idx into SourceLinks.

Follow the Acts::Example, we 

write the Seeding Alg & Track 

Params Estimation & CKF using 

Acts tools.

And finally get the track & track 

state stored in Acts::TrackContainer.

Event Loop

SpacePoints follows ActsExamples::SimSpacePoint
SourceLinks follows ActsExamples::IndexSourceLink
Measurements directly use Acts::BoundVariantMeasurement



23

ACTS tracking efficiency evaluation

Particle: mu- Energy:  1:100Gev

4 Integration of ACTS with CEPCSW

Tracking efficiency with Φ & pTDistribution of Δφ & Δθ



Summary & future work
Application of TRACCC seeding to the CEPC vertex detector

24

Summary

➢ Implement the CEPC detector geometry in ACTS format

➢ The TRACCC has been successfully applied for GPU-based seeding for CEPC vertex detector

➢ Update the TRACCC algorithm to be suitable for 6-layers CEPC geometry

➢ Use one common memory for both EDM4hep and VecMem to avoid the overhead from data copy

➢ Integrate the ACTS & TRACCC in CEPCSW

Future work

➢ Further analysis of seeding efficiency & computing performance

➢ Comparison between ACTS reconstruction & origin reconstruction algorithm.



Thank you

YiZhou Zhang, Xiaocong Ai, Tao Lin, WeiDong Li

zhangyz@ihep.ac.cn

15th Aug 2024

mailto:zhangyz@ihep.ac.cn


Backup



27

Adapt cuts of the parameters 
• TRACCC use some parameters to determine whether the space 

points can form a triplet. The cuts for some of the parameters are 

adapted to CEPC pixel geometry.
triplet_finding_helper::isCompatible

modified

Modify the EDM 
Add “track id” to the EDM of cells, so we can trace back from the 

found seeds to origin tracks:

• Seed → space point → cluster → cell 

*for the evaluation of track efficiency.

Add track id to EDM of TRACCC

2 CEPC Geometry in ACTS



28
3 Integration of ACTS with CEPCSW

VXD
Module size (x-y × z direction)
Layer 0, 1:

11mm*62.5mm
880 * 5000 (25um/bin)

Layer 2, 3, 4, 5:
22mm*125mm
880 * 5000 (25um/bin)

SIT
Module size (x-y × z direction)
Layer 0, 1, 2:

97.55mm*91.85mm
3902 * 3674 (25um/bin)

Get and store the local position in measurement

Get local position from EDM4hep
EDM4hep::TrackerHit do not directly provide the local 

position.

We set the segmentations in the cellid to get the local position.

The grid size of both VTX & SIT is set to 25um.


