

Nucleon Energy Correlators for the Color Glass Condensate

Hao-yu Liu (刘昊昱)

(Beijing University of Chemical Technology)

With Xiaohui Liu, Ji-chen Pan, Feng Yuan and Hua Xing Zhu

中国物理学会高能物理分会第十四届全国粒子物理学术会议,青岛

15th Aug, 2024

Based on [HL, X.Liu, J.Pan, F.Yuan, H.Zhu, arXiv:2301.01788]

Email address: lhy1991dbc@126.com

Outline

- > Review of CGC effective theory
- **➤** Nucleon energy correlator
- ➤ Nucleon energy correlator for small x
- **>**Summary

Gluon Saturation

[Gelis, Iancu, Jalilian-Marian, Venugopalan, 2010]

The gluon density increases with Bjorken x decreases

Gluon saturation

splitting trecombination

Typical Transverse Momentum

Saturation scale

Dilute

Collinear factorization

2-4 GeV $\,Q_s \gg \Lambda_{
m QCD}$

Gluon Distribution in CGC

Transverse Momentum distribution by CGC (Color Glass Condensate)

Effective theory of QCD

One of the most appropriate theories for saturation 4

Searching for deterministic evidence of saturation

Single hadron production in pA

[G.Chirilli,B.Xiao,F.Yuan, 2012]

[Y.Shi, L.Wang, S.Wei, B.Xiao, 2021]

[Iancu, Mueller, Triantafyllopoulos, 2016]

[HL, Y.Ma, K.Chao, 2019]

[HL, Z.Kang, X.Liu, 2020]

Inclusive DIS

[B. Ducloué, H. Hänninen, T. Lappi, Y. Zhu, 2017]

[G. Beuf, H. Hänninen, T. Lappi, H. Mäntysaari, 2020]

Search for saturation in pA collisions and DIS, many hints, no solid evidence

One of the main objects for EIC

Any new prob?

The measurement of Nucleon energy correlator

[X.Liu, H.Zhu, 2022] [H.Cao, X.Liu, H.Zhu, 2023]

Similar to normal DIS

One detector for lepton $x_B = \frac{-q^2}{2P \cdot q}$ $Q^2 = -q^2$

Another detector for the energy deposits at θ

$$\sum_{i} E_{i}$$

The weighted cross section

$$\Sigma(Q^2, x_B, \theta) = \sum_{i} \int d\sigma(x_B, Q^2, p_i) \frac{E_i}{E_A} \delta(\theta^2 - \theta_i^2)$$

The energy weight suppresses the soft contributions

No Sudakov logs suppression

The factorization of the weighted cross section

Factorization when $\Lambda_{\rm QCD} \ll \theta Q \ll Q$

$$\Sigma(Q^{2}, x_{B}, \theta) = \int \frac{dx}{x} \hat{\sigma}_{i, \text{DIS}} \left(\frac{x_{B}}{x}, Q\right) f_{i, \text{EEC}}(x, \theta)$$
Nucleon energy correlator

inclusive partonic DIS cross section

Suppose collinear factorization still holds for small x

$$\begin{split} f_{q,\text{EEC}}(x,\theta) & \text{collinear PDF} \\ &= \frac{\alpha_s T_R}{2\pi\theta^2} \int_x^1 \frac{d\xi}{\xi} (1-\xi) (\xi^2 + (1-\xi)^2) \left[\frac{x}{\xi} f_g \left(\frac{x}{\xi} \right) \right] \\ &\frac{1}{\theta^2} \text{ scaling} \qquad \theta^2 \Sigma \text{ insensitive to } \theta \end{split}$$

Naïve analysis

 $q_t \sim \Lambda_{\rm QCD}$ for collinear

No Sudakov suppression

Higher order

hardly hits the detector for $\theta Q \ll Q_s$ suppression Similar to the collinear case for $\theta Q \gg Q_s$ insensitive

Nucleon energy correlator by CGC

 $F_{g,x_B}(\vec{g_t})$ gluon transverse momentum distribution in CGC

$$\begin{split} f_{q,\text{EEC}}(x_B,\theta) &= \frac{N_C S_\perp}{8\pi^4} \int d^2 \vec{g}_t \int_{\xi_{\text{cut}}}^1 \frac{d\xi}{\xi} \mathcal{A}_{qg}\left(\xi,\theta,\vec{g}_t\right) F_{g,x_B}(\vec{g}_t) \\ \mathcal{A}_{qg}(\xi,\theta,\vec{g}_t) &= \frac{1}{\theta^2} (1-\xi) \vec{k}_t^2 (\vec{k}_t - \vec{g}_t)^2 \\ \times \left| \frac{\vec{k}_t}{\xi \vec{k}_t^2 + (1-\xi) (\vec{k}_t - \vec{g}_t)^2} - \frac{\vec{k}_t - \vec{g}_t}{(\vec{k}_t - \vec{g}_t)^2} \right|^2 \\ \mathcal{A}_{qg}(\xi,\theta,\vec{g}_t) &\longrightarrow \frac{1}{\theta^2} & \text{insensitive} \\ g_t \sim Q_s \quad k_t = \frac{1-\xi}{\xi} \frac{Q}{2} \theta & \text{insensitive} \end{split}$$

Expansion under different approximations

Different scaling of $\, heta$

Consistent with the naïve argument

Comparing CGC and collinear result

CGG result is suppressed for small θ

Collinear factorization can't give this suppression because of the absence of Sudakov factor

NEEC is a clean probe for small-x phenomena

Collinear and CGC prediction for HERA kinematics

Comparing CGC and collinear result

The spectrum becomes flat for $\theta Q \gg Q_s$

We can estimate Q_s by the tuning point

For the proton

$$\theta \sim 0.15 - 0.2 \ Q_s \sim \theta Q \sim 0.75 - 1.0 \,\text{GeV}$$

For the gold nucleus

$$\theta \sim 0.4 - 0.5$$
 $Q_s \sim \theta Q \sim 2 - 2.5 \,\mathrm{GeV}$

Consistent with the input Q_s parameter

A probe for the onset of gluon saturation

Nuclear Modification Factor

$$R_{pA} = \frac{A^{-1}\Sigma_A(Q^2, x_B, \theta)}{\Sigma_p(Q^2, x_B, \theta)}$$

Take ratios to reduce the systematics

 Q_s is larger for large nuclear

 $\theta^2 \Sigma(Q^2, x_B, \theta)$ is suppressed comparing to proton

There is no suppression for the collinear case

Summary and Outlook

- Nucleon energy correlator is a new probe of the gluon saturation phenomenon in DIS at the future electron-ion colliders. The θ -shape of the weighted cross section behaves differently in the collinear factorization theorem and the CGC.
- The difference is due to the intrinsic transverse momentum of order Qs induced by the non-linear small-x dynamics. The nucleon energy correlator offer a great opportunity to pin down the onset of the gluon saturation phenomenon in eA collisions.
- This probe is fully inclusive and does not involve fragmentation functions or jet clustering, it is both theoretically and experimentally clean.
- Extensions to other observables, such as measuring nucleon energy correlator in prompt photon production, can also be carried out at the LHC.

Thank You!

The Back up

Definition of Nucleon energy correlator

the momentum fraction that initiates a scattering process

Quark contribution

$$f_{q,\text{EEC}}(x,\theta) = \int \frac{dy^{-}}{4\pi E_{A}} e^{-ixPy^{-}}$$
$$\times \gamma^{+} \langle A|\bar{\psi}(y^{-})\mathcal{L}^{\dagger}(y^{-})\mathcal{E}(\theta)\mathcal{L}(0)\psi(0)|A\rangle$$
$$\mathcal{E}(\theta)|X\rangle = \sum_{i \in X} E_{i}\delta(\theta_{i}^{2} - \theta^{2})|X\rangle$$

When $\theta E_A \gg \Lambda_{\rm QCD}$, $f_{EEC}(x,\theta)$ can be further factorized

$$f_{i,\text{EEC}}(x,\theta) = \int \frac{d\xi}{\xi} I_{ij} \left(\frac{x}{\xi},\theta\right) \left[\xi f_{j/A}(\xi)\right]$$

 $f_{j/A}(\xi)$ collinear PDF

$$I_{ij}\left(\frac{x}{\xi},\theta\right)$$
 matching coefficient

Determined by the splitting function

Nucleon energy correlator in collinear factorization

By SCET

$$f_{q,\text{EEC}}(N,\theta) = \int dz z^{N-1} \frac{1}{2} \int \frac{dq^{+}d^{2}q_{t}}{q^{+}(2\pi)^{3}} \frac{q^{+}}{P^{+}} \delta((1-z)P^{+} - q^{+} - p_{X}^{+}) \delta(\theta_{q}^{2} - \theta^{2})$$

$$\times g_{s}^{2} \text{Tr}[T_{a}T_{a}] \frac{1}{2} \text{Tr}[\gamma_{t}^{\mu}\gamma_{t,\mu} \not q \gamma^{+}] \left(\frac{-\vec{q}_{t}^{2}}{(q^{+})^{2}} + \frac{-\vec{p}_{t}^{2}}{(p^{+})^{2}}\right) \left(\frac{p^{+}}{p^{2}}\right)^{2}$$

$$\times \frac{1}{2} \frac{1}{N_{C}^{2} - 1} \sum_{X} \langle P | A_{t,a,\mu} | X \rangle \langle X | A_{t}^{a,\mu} | P \rangle \int d\xi P^{+} \delta((1-\xi)P^{+} - p_{X}^{+})$$

$$l_{t} \sim \Lambda_{\text{QCD}} \qquad p^{2} = (l - q)^{2} = -2l \cdot q = -\frac{l^{+}}{q^{+}} \vec{q}_{t}^{2}$$

$$q_{t} = q_{z} \sin \theta = \frac{q^{+}}{2} \theta_{q}$$

Origin of $\frac{1}{\theta^2}$ scaling

$$f_{q,\text{EEC}}(N,\theta) = \int dx \, x^{N-1} (1-x) \, \frac{\alpha_s}{2\pi} T_R \left\{ \frac{1}{\theta^2} \left[x^2 + (1-x)^2 \right] \right\} \int d\xi \xi^N f_{g/P}(\xi)$$

Evolution of Nucleon energy correlator

By the factorization

$$\Sigma(Q^2, x_B, \theta) = \int \frac{dx}{x} \hat{\sigma}_{i, \text{DIS}} \left(\frac{x_B}{x}, Q\right) f_{i, \text{EEC}}(x, \theta)$$

$$\frac{d\Sigma/d\ln\mu = 0}{d\hat{\sigma}_{i,\text{DIS}}/d\ln\mu = -P_{ji}\otimes\hat{\sigma}_{j,\text{DIS}}}$$

$$\frac{df_{i,\text{EEC}}(x,\theta)}{d\ln\mu} = P_{ij}\otimes f_{j,\text{EEC}}$$

Comparing CGC and collinear result

EIC kinematics

Full CGC

 $\theta^2 \Sigma$ by direct CGC calculation

$$\Sigma_{t}^{\gamma^{*}}(Q^{2}, x_{B}, \theta) = \sum_{q} \frac{2N_{c}\alpha^{2}e_{q}^{2}}{\pi^{2}x_{B}Q^{2}} S_{\perp} \int dz d^{2}\vec{k}_{t} \frac{d^{2}\vec{l}_{t}}{(2\pi)^{2}} F_{g,x_{B}}(\vec{l}_{t}) \left[z^{2} + (1-z)^{2}\right] \left| \frac{\vec{k}_{t}}{\vec{k}_{t}^{2} + \Delta^{2}} - \frac{\vec{k}_{t} - \vec{l}_{t}}{(\vec{k}_{t} - \vec{l}_{t})^{2} + \Delta^{2}} \right|^{2} \times \left[\frac{\vec{k}_{t}^{2} + (1-z)^{2}Q^{2}}{(1-z)Q} \frac{x_{B}}{Q} \right] \frac{1}{2\theta} \delta\left(\theta - \tan^{-1}\frac{2k_{t}(1-z)Q}{k_{t}^{2} - (1-z)^{2}Q^{2}}\right) \theta\left(\frac{\vec{k}_{t}^{2} + (1-z)^{2}Q^{2}}{(1-z)Q} < x_{B} \frac{Q}{x_{B}}\right)$$