

# Recent Results from ALICE(-China)



Zebo Tang (唐泽波) University of Science and Technology of China



August 12-18, 2024 Qingdao, China



#### LHC and ALICE







#### ALICE-China:

- 华中师范大学 (CCNU, Wuhan)
- 中国原子能科学研究院 (CIAE, Beijing)
- 中国地质大学(武汉) (CUG, Wuhan)
- 复旦大学

(FDU, Shanghai)

 中国科学技术大学 (USTC, Hefei)



#### **The ALICE Detector in Run2**





# Heavy Ion Collisions at TeV

- High initial temperature
- Large entropy
- Long lifetime

Complementary between RHIC and LHC



• Large cross-section for hard probes (jets, heavy flavor, quarkonium etc)

Unique opportunity for hard probes measurements



#### Jets in QGP

#### Jet vacuum fragmentation

#### Jet in-medium fragmentation





#### Transport properties of the hot, dense medium



# Similarity between LHC and RHIC



#### Surprisingly similar suppression at RHIC and LHC for

- Jets
- High- $p_T$  light flavor hadrons
- Intermediated  $p_T$  charmed mesons
- Ground bottomonium state

#### Likely due to interplay of different effects





### **Hadron-Jet Correlations**



Jet energy loss and deflection in QGP

Simultaneously accessed via hadron-jet correlations

State-of-the-art technology to push down to low  $p_T$ 



### **Recoil Jets Results**



- First observation of recoil jet yield enhancement and medium-induced acoplanarity broadening at low-p<sub>T</sub> with ALICE
  - ➔ Medium response is favored

z(fm)

|x|δe

x(fm)

G-Y. Qin et. al, PRL103, 152303 (2009)



# **Flavor Dependence**

ALICE, EPJC83, 497 (2023)

AMPT

HIJING

Away side

 $p_{_{\mathrm{T,assoc}}} \, (\mathrm{GeV}/c)$ 



- → Energy loss by high-energy parton recovered in surrounding
- Independent on trigger particle species
- Provide new constraints on jet quenching and medium response

**Associated Particles** 



### **Energy Loss of Bottom**

ALICE, JHEP02, 066 (2024)



- Pushed to low-p\_T via D<sup>0</sup> and J/ $\psi$ 
  - D<sup>0</sup> has better statistics
  - $J/\psi$  has better kinematics
- Strong suppression of bottom



• Clear mass hierarchy at intermediate  $p_T$  $R_{AA}(B) > R_{AA}(D) > R_{AA}(light hadrons)$ 



# **Elliptic Flow of Bottom**

#### ALICE, EPJC83, 1123 (2023)



- Positive elliptic flow of D<sup>0</sup> from B-hadons decay
- Lower than that of prompt  $D^0$  for  $p_T < ~ 6 \text{ GeV/c}$
- Described by various models based on bottom quark transport in QGP
- Better precision needed to constrain heavy quark spatial diffusion coefficient



## **Charmonium in QGP**



P. Braun-Munzinger, J. Stachel, Nature 448, 302 (2007) A. Andronic et. al., Nature 561(2018) 321-330

#### Hot medium effects:

- Melting in QGP
- Regeneration
- Jet quenching?





# **Energy Dependence of J/** $\psi$ **Suppression**



NA50, PLB 477, 28 (2000) Wei Zhang, QM 2023 STAR, PLB 771, 13 (2017) Kaifeng Shen, SQM 2021 ALICE, PLB 734, 314 (2014) ALICE, PLB 849, 138451 (2024)





### **Differential Measurements at ALICE**

ALICE, PLB 849, 138451 (2024)

 $R_{\rm AA}$ 



- Clear rapidity dependence at low- $p_T$
- Similar suppression at high- $p_T$



2.5.1 Study of the charmonium ground state: evidence for the (re)generation and demonstration of deconfinement at LHC energies

\*Energy loss may play import role at high  $p_T$ 

**Clear centrality dependence** 

Opposite at low and high  $p_T$  region

ALICE

Pb–Pb,  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 

10

 $p_{_{\rm T}}\,({\rm GeV}/c)$ 

Inclusive J/ψ, |y| < 0.9 • 0–10%

30-50%



### **Hypertriton Production**



- Hypertriton  $\binom{3}{\Lambda}H$  is a unique probe to study Y-N interactions
- Hypertriton production is precisely measured via machine learning
- Extracted ratio described by the coalescence model with the world average binding energy ( $B_{\Lambda}$ )



# Search for Chiral Vortical Effect

ALICE, Quark Matter 2023



- The interplay between the strong vortical field and chiral anomaly could give rise to the Chiral Vortical Effect (CVE) --- remains unexplored
- CVE has been measured with Λ-p azimuthal correlations for the first time
- Non-trivial behaviors are observed. Interpretation ongoing



# Small System – QGP Droplet?

#### Jiayin Sun, Quark Matter 2023





### **Charm Hadronization**

#### ALICE, JHEP12, 086 (2023)



- Charm quarks redistributed even in pp collisions at the LHC
- ➔ Modification of hadronization in pp



- Measurements pushed down to  $p_T = 0$
- Significantly larger than default PYTHIA
- Qualitatively described by models

第十四届全国粒子物理学术会议,青岛,2024年8月12-18日

**Ξ3:40 pm**)



### **Bottom Hadronization**

ALICE, arXiv:2407.10593

#### ALICE, PRD108, 112003 (2023)



- Bottom baryon-to-meson ratios show similar enhancement as charm and strange hadrons in both pp and pPb collisions at LHC
- ➔ Mass doesn't play a significant role



#### **Strangeness Enhancement?**





ALI-PUB-567901

 Ratio of strange and non-strange D mesons compatible between pp and ee collisions



• Hint of harder fragmentation for strange mesons w.r.t non-strange D mesons

### **Strangeness/Baryon Enhancement?**





- Ratio of strange and non-strange D mesons compatible between pp and ee collisions
- Indication of enhancement for charmstrange baryons → Puzzling



### ALICE Run3





• New analysis framework (O<sup>2</sup>)

Significantly improved vertex resolution and data acquisition rate

### **Charmonium Measurements in pp**



• Significantly improved statistics greatly enhance physics capability



# **Charmonium Measurements in pp**

#### ALICE, SQM 2024



- Run 3 results consistent with Run 2 results with higher granularity
  - Validation of analysis chain with new detectors and frameworks
- Described by NRQCD and ICEM calculations



### Non-prompt D-mesons Fraction in pp

ALICE, SQM 2024



- Run 3 results consistent with Run 2 results with higher granularity
- Models either underestimate or overestimate data



# ALICE after LS4 (ALICE 3)





- Shutdown/Technical stop Protons physics Ions (tbc after LS4) Commissioning with beam Hardware commissioning
- Systematic measurements of (multi-) heavy flavored hadrons
- Precision measurements of dileptons
- Hadron correlations

...



#### **ALICE 3 Detector**





- Compact and lightweight all silicon tracker
- Extensive particle identification
- Large acceptance

ALICE-China interests: Inner tracking system and time-of-flight



# Inner Tracking System

| -  | Layer | Material            | Intrinsic          | Barrel l                 | ayers              | Forward di              | iscs                    |                          |
|----|-------|---------------------|--------------------|--------------------------|--------------------|-------------------------|-------------------------|--------------------------|
|    |       | thickness $(\%X_0)$ | resolution<br>(µm) | $ Length (\pm z)  (cm) $ | Radius (r)<br>(cm) | Position ( $ z $ ) (cm) | R <sub>in</sub><br>(cm) | R <sub>out</sub><br>(cm) |
| VD | 0     | 0.1                 | 2.5                | 50                       | 0.50               | 26                      | 0.50                    | 3                        |
|    | 1     | 0.1                 | 2.5                | 50                       | 1.20               | 30                      | 0.50                    | 3                        |
|    | 2     | 0.1                 | 2.5                | 50                       | 2.50               | 34                      | 0.50                    | 3                        |
| ML | 3     | 1                   | 10                 | 124                      | 3.75               | 77                      | 5                       | 35                       |
|    | 4     | 1                   | 10                 | 124                      | 7                  | 100                     | 5                       | 35                       |
|    | 5     | 1                   | 10                 | 124                      | 12                 | 122                     | 5                       | 35                       |
| OL | 6     | 1                   | 10                 | 124                      | 20                 | 150                     | 5                       | 80                       |
|    | 7     | 1                   | 10                 | 124                      | 30                 | 180                     | 5                       | 80                       |
|    | 8     | 1                   | 10                 | 264                      | 45                 | 220                     | 5                       | 80                       |
|    | 9     | 1                   | 10                 | 264                      | 60                 | 279                     | 5                       | 80                       |
|    | 10    | 1                   | 10                 | 264                      | 80                 | 340                     | 5                       | 80                       |
| -  | 11    | 1                   |                    |                          |                    | 400                     | 5                       | 80                       |



Retractable Vertex Detector

- ALICE-China is interested in vertex detector and middle layer of the ALICE 3 ITS
  - CCNU etc, benefit from the experience on ALICE ITS2 and ITS3



# **Time-of-Flight**

|                                     | Inner TOF      | Outer TOF     | Forward TOF disks            | · · · · · · · · · · · · · · · · · · · |
|-------------------------------------|----------------|---------------|------------------------------|---------------------------------------|
| Radius (m)                          | 0.19           | 0.85          | 0.15 to 1.0                  | B = 2.0  T                            |
| z range (m)                         | -0.62 to 0.62  | -3.50 to 3.50 | ±3.70                        |                                       |
| Area (m <sup>2</sup> )              | 1.5            | 37            | 6                            |                                       |
| Acceptance                          | $ \eta $ < 1.9 | $ \eta  < 2$  | $2 <  \eta  < 4$             |                                       |
| Granularity (mm <sup>2</sup> )      | $1 \times 1$   | $5 \times 5$  | $1 \times 1$ to $5 \times 5$ |                                       |
| Hit rate (kHz/cm <sup>2</sup> )     | 200            | 15            | 280                          |                                       |
| Material thickness (% $X_0$ )       | 1 to 3         | 1 to 3        | 1 to 3                       |                                       |
| Power density (mW/cm <sup>2</sup> ) | 50             | 50            | 50                           |                                       |
| Time resolution (ps)                | 20             | 20            | 20                           |                                       |
|                                     |                |               |                              | 10 <sup>-1</sup>                      |

- DAQ rate requires new technique (Silicon)
- Sensor options:
  - MAPS with gain layer (baseline)
  - Low gain avalanche diodes (fallback solution)
  - SiPMs (synergy with RICH R&D)

10<sup>-2</sup>

2

3

n



# **USTC Experience on LGAD**



6.4 m², ~3.6 M channels, 1.3x1.3 mm², 50  $\mu m$  thick

- ATLAS-USTC developed LGAD for ATLAS HGTD
  - < 35 ps before irradiation</li>
  - < 70 ps after irradiation up to neq =  $2.5 \times 10^{15}$ /cm<sup>2</sup>
  - 28 ps reached, higher bias voltage unexplored
- Need R&D on thinner (and double layers) LGAD to reach 20 ps







# Summary

- ALICE-China making significant contributions in various physics topics in PbPb and small systems with ALICE
  - Jets transport in QGP
  - Heavy flavor hadronization, flow and energy loss
  - Quarkonium dissociation and (re)generation
  - Correlations
  - Exotics
  - ...
- ALICE-China actively involved in state-of-the-art detector R&D for ALICE upgrades
  - High spatial resolution MAPS for ALICE 3
  - High timing resolution LGAD for ALICE 3



## **ALICE Talks in this Conference**

- Tiantian Cheng, Investigation of charm-quark hadronisation in proton–proton collisions with ALICE, Heavy Ion Physics, Wed. 15:40
- Yongzhen Hou, Measurements of jet quenching using semi-inclusive hadron+jet distributions in pp and central Pb–Pb collisions at 5.02 TeV with ALICE, Heavy Ion Physics, Wed. 17:40
- Kai Cui, h-strangeness correlation in Run 3 with ALICE, Hadron Physics and Flavor Physics, Thu. 16:45
- Yuan Zhang, Measurements of inclusive J/ψ and ψ(2S) production at mid-rapidity at 13.6 TeV with ALICE, Hadron Physics and Flavor Physics, Thu. 17:15
- Pengzhong Lu, Non-prompt  $\Lambda_c^+$  Production with machine learning in p–Pb Collisions at  $\sqrt{s_{NN}} = 5.02$  TeV with ALICE, Hadron Physics and Flavor Physics, Thu. 17:15

# Thanks!