中国物理学会高能物理分会第十四届全国粒子物理学术会议(2024)

Contribution ID: 88

Type: Oral report

Review of θ_{13} measurements and latest results from Daya Bay

The neutrino oscillation is described by six independent parameters: three mixing angles θ_{23} , θ_{12} , and θ_{13}), two mass-squared splittings, and one CP-violating phase (δ_{cp}). As of 2010, only θ_{13} and δ_{cp} remained unknown. However, a non-zero value of θ_{13} is crucial for exploring CP violation in the lepton sector. In 2011, the T2K and Double Chooz experiments provided evidence of a non-zero θ_{13} . From 2012 to the present, the Daya Bay reactor experiment has pushed the precision of θ_{13} down to 2.8%. Recently, Daya Bay achieved a 6.5% precision of θ_{13} in an independent measurement using the new capture-on-hydrogen sample. Although θ_{13} is currently the most precisely known mixing angle, it is expected to become the least precise with the next-generation experiments such as JUNO.

In this report, I will review the history and current status of θ_{13} measurements. The latest results from Daya Bay will be highlighted. The potential for further improving the precision of θ_{13} measurements will also be discussed. These high-precision measurements will constrain the PMNS neutrino mixing matrix to within 1% precision, opening the door to high-precision Unitarity tests in neutrino physics.

Primary author: LI, Jinjing (Tsinghua University)

Presenter: LI, Jinjing (Tsinghua University)

Track Classification: 中微子物理、粒子天体物理与宇宙学