

反应堆中微子能谱:

大亚湾实验最新结果与JUNO-TAO实验

韩阳,中山大学 徐嘉洋,高能所

代表大亚湾和江门实验合作组

全国粒子物理学术会议 2024. 8. 13~18 青岛

反应堆中微子能谱测量 最新结果

大亚湾实验

• Nuclear reactor: powerful & pure $\overline{\nu}_{e}$ source

• Production via beta decay: $n \rightarrow p + e^- + \overline{v}_e$

235U, 238U, 239Pu, 241Pu contribute >99% $\overline{\nu}_{\rho}$ (commercial reactors)

 Model predictions: **Conversion** method **Summation method**

Reactor antineutrinos

• Measurement via inverse beta decay: $\overline{v}_e + p \rightarrow e^+ + n$

Prompt

• "Direct" measurement:

(commercial reactors)

Overall IBD yield

tission number

 Combination of isotopic yields **Evolution** along fuel burning

 $\sigma_f =$

3

Daya Bay (DYB) experiment

• Detect $\overline{\nu}_{\rho}$:

from 2 nuclear power plants (6 cores); with 8 identical antineutrino detectors (ADs); in 3 experimental halls (EHs);

• Leading θ_{13} experiment. $sin^2 2\theta_{13} = 0.0851 \pm 0.0024$ PRL 130 (2023) 16, 161802 (Relative near/far measurment for θ_{13})

This talk:

Full data set: ~4.7 million IBD (n-Gd) sample at DYB near ADs. Precision measurement of reactor $\overline{\nu}_e$ flux and spectrum. (absolute measurement)

Running from 2011 to 2020.

The Daya Bay Experiment

EH3

1540m from Ling Ao I 1910m from Daya Bay 860 m.w.e overburden

> EH2 470m from Ling Ao I 265 m.w.e overburden

3 Underground Experimental Hall

- Ling Ao II Cores - Ling Ao I Cores

EH1 363m from Daya Bay 250 m.w.e overburden

Daya Bay Cores

- 17.4 GW_{th} power
- 8 operating detectors
- 160 t total target mass

Overall spectrum and flux

Spectrum:

~1.4% precision in 2~5MeV

Comparison with models shape + rate:

DYB differs from **HM** (more significant) and SM2023; "constant" deficit below 4MeV "slight" excess around 5MeV

• shape-only:

DYB differs from **HM** and **SM2023** by feasuring a "5MeV bump"

Conversion models: Huber-Mueller (HM)

PRC 83, 054615 (2011) PRC 84, 024617 (2011) KI (updated ²³⁵U)

PRD 104, L071301 (2021)

Flux: $[5.84 \pm 0.07] \times 10^{-43} cm^2/fission$ 1.2% precision

Comparison with models

rate-only: •

DYB differs from **HM**, agrees better with SM2023 and KI

Summation models: SM2023 (latest) PRC 108, 055501 (2023) PRL-130, .021801 (2023)

• Fraction of fission isotopes changes with fuel burning, in one period:

 ^{235}U ^{238}U ^{239}Pu ^{241}Pu

• Effective fission fraction: frac. of fiss. isotopes viewd by detectors

$$F_i = \sum_{r=1}^6 \frac{W_{th,r}(t)f_{i,r}(t)}{L_r^2 \overline{E}_r(t)} / \sum_{r=1}^6 \frac{W_{th,r}(t)}{L_r^2 \overline{E}_r(t)}$$

Fuel evolution in terms of F₂₃₉

Fuel Evolution

 $d\sigma_{f}$ $\frac{J}{m} = [-1.96 \pm 0.13] \times 10^{-43} cm^2/fission$ dF_{239}

• Enable extraction of istopic spectrum and flux

Isotopic spectrum

Extract isotopic spectra of ²³⁵U and ²³⁹Pu through fuel evolution analysis:

evolution data

²³⁵U spectrum: ~3% precision in 2~5 MeV

• Rate+shape: **DYB** vs **HM**: $>3\sigma$ deficit below 4MeV **DYB** vs **SM2013**: $>3\sigma$ bump above 4MeV

• Shape-only: **DYB** vs **Models**: $>3\sigma$ bump above 4MeV

PS: Stereo (Nature 613, 257–261) agrees with SM2023-PRL (new summation model)

²³⁹Pu spectrum: ~7% precision in 2~5 MeV

DYB with larger errors, consistency with Models: at $\sim 2\sigma$ level

Isotopic flux

• Extract ²³⁵U and ²³⁹Pu fluxes with fuel evolution data

 $\sigma_{235} = [6.16 \pm 0.12] \times 10^{-43} cm^2 / fission$ $\sigma_{239} = [4.16 \pm 0.21] \times 10^{-43} cm^2 / fission$

235U flux:
DYB differs from HM (>2σ),
agrees better with KI and SM2023

²³⁹Pu flux:

• **DYB** with larger errors, consistency with **Models** at $\sim 1\sigma$ level

"Direct" measurement of rec. energy spectrum of IBD prompt signal

Motivation & Possible usage of unfolded spectra: 0 **Direct comparison with models** Input for other experiments, e.g. JUNO

• At DYB: ²³⁵U and ²³⁹Pu spectra obtained simultaneously from decomposition, so correclation exists between spectra.

Unfolding multiple spectra together, by considering their correlations. (for the first time)

Spectrum unfolding

Unfolding

"Remove" detector response

Neutrino energy spectrum of reactor antineutrino signal:

To summarize:

* Raector antineutrino spectrum and flux measurement with DYB full data set (n-Gd, 4 ADs)

Overall, ²³⁵U and ²³⁹Pu spectra and fluxes at few percent precision — world-leading Unfolded neutrino spectra, "free" from detector response ____

Still open questions

Reactor antineutrino shape anomaly w.r.t. all models ! Fine structure (see talk of TAO).

* More efforts needed from both experimental and theoretical sides

***** TAO will help to address some of these open questions...

Reactor antineutrino rate anomaly: anomaly w.r.t. HM; seems to vanish with KI, not firmly sloved !

台山中微子实验 (JUNO-TAO或TAO)

The Taishan Antineutrino Observatory(JUNO-TAO or TAO)

***** TAO is a satellite experiment of the JUNO

* A ton-level Gadolinium-doped Liquid Scintillator detector at 44 m from a reactor core of the Taishan NPP

* 10 m² SiPM coverage(94%), operate at -50°C, 4500 p.e./MeV, the energy resolution better than $2\%/\sqrt{E}$ MeV.

***** 1 million IBD events *a* 3 years, installation start in the fall of 2024, operation in early 2025

TAO Physics Goals

1.Fine structure measurement

2. Provide a benchmark spectrum for nuclear database

3.Provide reference spectrum for JUNO Provide reference spectrum to remove effect of fine structure and - spectral shape dependence

4.Search for sterile neutrino

5.Reactor monitoring

arXiv:2005.08745

arXiv:2405.18008

<2% shape uncertainty@3years in NMO sensitive energy range

~1% shape uncertainty from statistics@3years

~0.8% shape uncertainty from backgrouds@3years Fast Neutron, flux ratio ~9% ⁹Li/⁸He, flux ratio ~5% Accidental, flux ratio ~20%

~0.3% shape uncertainty from detector response@3years Include: Energy Leakage, Liquid Scintillator Nonlinearity

TAO Spectrum

arXiv:2405.18008

***** Central Detector

2.8 ton dewatering (<10 ppm) low-temperature GdLS 10 m² SiPM coverage(94%), High PDE(~50%, 4500 p.e./MeV) Operate at -50°C, SiPM DCR: <100 Hz/mm² (a)-50°C

Temperature uniformity:±0.5°C

***** Calibration System

ACU+CLS

- ***** Muon Veto System

Top Veto Tracker (Top) 4-Layer PS + SiPM

Water Tank(Around) **3 irregular water tanks 300 3 inch PMTs**

TAO Detector

GdLS recipe: LAB + 3 g/L PPO + 2 mg/L bis-MSB + 0.1%Gd + 0.5%DPnB

GdLS index: High light yield(~15000/MeV), High transparency (~93%), High flash point (>100°C) No precipitation@-50°C(Add DPnB), Stable property@-50°C, Low water content(<10ppm)

3.5t LAB and 3.3t GdLS have been prepared, ready to be shipped

Relative Transparency

Relative Light Yield

GdLS Aging Test Result

SiPM Quality Control

All SiPMs have been tested

298 SiPM tiles disqualified

Average PDE: ~48.8% @-50°C, 3.2V(~50%); Average DCR:~45Hz/mm² @-50°C, 3.2V(<100Hz/mm²)

Characterization Test Result

Parameters	Value	Measured*	Unit
Photon Detection Efficiency	Min: 0.44, Typical: 0.47	0.488	
Dark Count Rate	Max: 41.7, Typical: 13.9	45.06	Hz / mm ²
Crosstalk Probability	Max: 0.15, Typical: 0.12	0.121	-
After-pulsing Probability	Max: 0.08, Typical: 0.04	< 0.001 (360ns)	
Pixel Gain	Min: 1×10 ⁶ , Typical: 4×10 ⁶	> 1×10 ⁶	_
Dark Current Deviance	Max: 95, Typical: 40	-	%
Operating Voltage Range	Min: 6, Typical: 6.5	> 6.5	Volt

Burn-in Test Result DOI 10.1088/1748-0221/19/07/P07028

Characterization test

10⁴ 10³ 10² $\chi^{\rm 2/ndf}$ 10 10⁰ ²/ndf < 6.5 Normal /ndf > 6.5, $R_S \ge 0.8$ 10 temp. correlation $^{2}/ndf > 6.5, R_{S} < 0.8$ w/o temp. correlation 10 0.5 -0.50.0 10 Correlation Coefficient R_S

17

SiPM Electronic System

Final System: SiPM+FEB+FEC+GCU+DAQ System Design: 8048 chs, 1SiPM-1FEB-2chs, 96chs-1FEC System Index: Charge RES<15%, SNR>10, Time RES<1ns ADC: 250MHz/12bit or 125MHz/16bit, Dynamic Range:1-180 p.e./ch Data Rate: FEC TDAQ: ~70 Gbps, TDAQ Disk: ~100 Mbps

Calibration System

***** Automatic Calibration Unit (ACU, from Daya Bay) ⁶⁸Ge source, Combined γ source (¹³⁷Cs + ⁵⁴Mn + ⁴⁰K + ⁶⁰Co) LED system (Wave length, Trigger rate, Intensity can be changed) Non-linearity(uncertainty<1%), SiPM characterization calibration ***** Cable Loop System (CLS) ¹³⁷Cs source, 110 points Non-uniformity calibration (uncertainty<0.5%)

n-uniformity Calibration

DOI 10.1140/epjc/s10052-022-11069-3

CLS Syster

***** Top Veto Tracker (TVT) **PS+ Wave-Shifting Fiber + SiPM** 4 Layers, 160 strips, 2 m×20 cm×2 cm/strip Muon veto efficiency>99% **Production and QA finished**

***** Water Tank (WT) 3 standalone water tank 300 3 inch PMT, 50 ton pure water Muon veto efficiency>99% Detailed design finished, to be produced

Muon Veto System

- arXiv:2406.15973

Motivation: Assemble and test each system_

CD 1:1 Prototype Assembling:

Verified and improved assembly produce, finished-in Dec. 2023 in IHEP

Cooling System Testing:

Temperature non-uniformity $< 1^{\circ}C$, System temperature stability: 0.1 °C

Calibration System Testing:

ACU, CLS, and LED system can operate normally

Electronic System Testing: Data can be triggered and readout

SiPM Testing: Usage LED source to calibrate SiPM DCR and PDE, consistent with SiPM quality test result

GdLS Testing: Usage cosmic ray muon, get relative light yield from different temperature, consistent with external test result

1:1 Prototype

Charge Distribution by Electronics Readout

Relative Light Yield

PMT R6233 PMT XP5382 PMT R6091 -20 temperature[Degree]

Summary of TAO

***** TAO will measure reactor antineutrino spectrum with sub-percent energy resolution ($<2\%/\sqrt{E}$), and provide a precision reference antineutrino spectrum for JUNO

* Feasibility of each system have been verified through quality test and prototype

* Will start assembling in Taishan NPP in 2024, and start data taking in early 2025

