

Review of θ₁₃ measurements and latest results from Daya Bay

Jinjing Li (李进京)

On behalf of the Daya Bay collaboration

MAIL: jinjing-li@foxmail.com

Department of Engineering Physics, Tsinghua University

Neutrino Oscillation: 2004 to 2024

	Value $(3\sigma \text{ C.L.})$		Source				
	$\sin^2 heta_{12}$	$0.3\substack{+0.09 \\ -0.07}$	Solar + KamLAND				
	$\sin^2 heta_{23}$	pprox 0.5	Atmospherics + K2K				
	$\sin^2 heta_{13}$	< 0.066	CHOOZ				
	Δm^2_{21}	$6.9^{+2.6}_{-1.5} \times 10^{-5} \text{ eV}^2$	Solar + KamLAND				
	$\left \Delta m^2_{32}\right $	$2^{+1.2}_{-0.9} \times 10^{-3} \ \mathrm{eV}^2$	Atmospherics + K2K				
	$\delta_{ m CP}$	/	/				
	2004						
2024							
	Value (1σ)		Source	Source			
$\sin^2 heta_{12}$	0.307 ± 0.013		Solar + Kam	ILAND			
$\sin^2 heta_{23}$	$0.454^{+0.019}_{-0.016} \text{ or } 0.568^{+0.016}_{-0.021}$		Atmospherics + Accelerators				
$\sin^2 heta_{13}$	$(2.19 \pm 0.07) imes 10^{-2}$		Daya Bay + RENO	O + D-Chooz			
Δm^2_{21}	$(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$		Solar + Kam	ILAND			
Δm^2_{32}	(2.455 ± 0.02) $-(2.529 \pm 0.02)$	$28) \times 10^{-3} \text{ eV}^2$ (NO 029) × 10 ⁻³ eV ² (IC	$\frac{1}{2} \text{Atmospherics} + A$	Accelerators			
$\delta_{ m CP}$		/	$T2K + NO\nu A$	+ SuperK			

2

Why $\boldsymbol{\theta}_{13}$ Matters

- The dominant terms in determining $\delta_{\rm CP}$, Neutrino Mass Ordering, and θ_{23} octant are all directly related to θ_{13}
- Jarlskog invariant $J_v = \sin \theta_{13} \cos^2 \theta_{13} \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \delta_{CP}$

- Improved measurements by reactor experiments can break $\theta_{13} - \delta_{CP}$ degeneracy in Long Baseline experiments and greatly improves their sensitivity
- Opening the possibility of a role of neutrino oscillations in explaining the matter-antimatter asymmetry in the Universe

T2K: Eur. Phys. J. C 83 (2023) 9, 782

$\boldsymbol{\theta}_{13}$ Status at 2004

- White paper ready:
 - WHITE PAPER REPORT on Using Nuclear Reactors to Search for a value of θ_{13} , <u>hep-ex/0402041</u>

$\boldsymbol{\theta}_{13}$ Status at 2008

Daya Bay

Double Chooz

Three reactor experiments: Daya Bay, Double Chooz and RENO started construction

Reactor Neutrinos

- The strongest artificial neutrino source on the Earth
 - 2×10²⁰ v's per second per GW thermal power, >99.7% from ^{235,238}U and ^{239,241}Pu

Detecting Reactor Neutrinos

- Easy to detect via the Inverse Beta Decays (IBD)
 - Well distinguished prompt-delayed pair signature
 - Prompt positron deposits energy and annihilation
 - **Delayed** neutron capture (Δt : ~30/200 µs for nGd/nH)

Detecting Reactor Neutrinos

- Easy to detect via the Inverse Beta Decays (IBD)
 - Well distinguished prompt-delayed pair signature
 - Prompt positron deposits energy and annihilation
 - **Delayed** neutron capture (Δt : ~30/200 µs for nGd/nH)

Measuring $oldsymbol{ heta}_{13}$ with Reactor $\overline{oldsymbol{ u}}_e$

- Disappearance experiments to measure $\overline{\nu}_{e}$ survival probabilities $P = 1 - \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta_{21} - \sin^{2}2\theta_{13} \left(\cos^{2}\theta_{12}\sin^{2}\Delta_{31} + \sin^{2}\theta_{12}\sin^{2}\Delta_{32}\right)$
 - Place two detectors for a relative measurement, <1% systematics

First shot in 2012

- Daya Bay firstly excluded θ =0 in 2012 with 5.2 σ significance
 - $\sin^2 2\theta_{13} = 0.092 \pm 0.016(\text{stat}) \pm 0.005(\text{syst})$
 - Phys. Rev. Lett. 108 (2012) 171803

First shot in 2012

Confirming Daya Bay's observation

RENO

Phys. Rev. Lett. 108 (2012) 191802 0.113 ± 0.013(stat.) ± 0.019(syst.) April 2012, 4.9σ

Double Chooz far detector

Phys. Rev. Lett. 108 (2012) 131801

0.086 ± 0.041(stat.) ± 0.030(syst.) Nov. 2011, 94.6% C.L.

First shot in 2012

Shape distortions consistent with three-flavor oscillation predictions

Daya Bay, March 2012 Phys.Rev.Lett. 108 (2012) 171803 RENO, April 2012 Phys.Rev.Lett. 108 (2012) 191802 Double Chooz far detector Phys.Rev.Lett. 108 (2012) 131801

Precision improvement

• Data statistics

- Stable data taking, include nH IBDs
- Daya Bay: Dec. 2011 to Dec. 2020, 3158 days
 - 8 detectors, total thermal power up to 17.4 GW
- Double Chooz: Apr. 2011 to Dec. 2017, ~1350 days
 - 2 detectors, total thermal power up to 8.5 GW
- RENO: Aug. 2011 to Mar. 2023, ~3800 days
 - 2 detectors, total thermal power up to 16 GW
- Systematics uncertainty
 - Selection efficiencies, backgrounds
 - Data-driven evaluation also depends on the statistical
- Spectral measurement
 - Increase number of points for energy/baseline measurement
 - Need energy response model $(E_v \rightarrow E_p)$

Backgrounds

- Signal + backgrounds for Daya Bay's far site
- Accidental background
 - Largest contribution for both nH and nGd but with negligible uncertainty
- ⁹Li/⁸He: largest background uncertainty for both nH and nGd
- New background for nH: radiogenic neutron background

Detector Identicalness

- Multiple detectors at the same site at Daya Bay enables side-by-side comparison
- Confirming that systematic errors are under control

Relative differences on energy scales (<0.2%) and Gd capture fractions (<0.1%)

Detector Identicalness

Also good identicalness for IBD spectrum

nGd-IBD sample PRD 95, 072006 (2017)

Relative differences on energy scales (<0.2%) and Gd capture fractions (<0.1%)

Energy Response Model

- Nonlinear energy response
 - Quenching (Birks constant) and Cherenkov effects
 - Readout electronics (FADC correction)
- 0.5% precision using multiple γ's and ¹²B spectrum

$\boldsymbol{\theta}_{13}$ with nGd: Daya Bay

Daya Bay reported the precision measurement with 3158-days full dataset in 2022

- $\sin^2 2\theta_{13} = 0.0851 \pm 0.0024$
- $\Delta m_{32}^2 = 2.466 \pm 0.060 (-2.571 \pm 0.060) \times 10^{-3} \, \text{eV}^2$

precision 2.4%

precision 2.8%

• Systematic uncertainty contributed about 50% in total

$\boldsymbol{\theta}_{13}$ Measurement with nGd at RENO

- Based on the measured far-to-near ratio of IBD rates and prompt spectra
 - $-\sin^{2}2\theta_{13} = 0.0920 + 0.0044 + (\text{stat.}) + 0.0041 + (\text{syst.}) \qquad \text{precision 6.5\%} \\ -\Delta m_{ee}^{2} = 2.57 + 0.10 + 0.05 + 0.05 + (\text{syst.}) \times 10^{-3} \text{eV}^{2} \text{precision 4.6\%}$
- [Reference] 2200-days result published at 2018
 - $-\sin^2 2\theta_{13} = 0.0896 \pm 0.0048$ (stat.) ± 0.0047 (syst.)
 - $-\Delta m_{ee}^2 = 2.68 \pm 0.12$ (stat.) ± 0.07 (syst.)[×10⁻³eV²]

precision 7.5% precision 5.2%

$\boldsymbol{\theta}_{13}$ Measurement with nH at RENO

- Using nH data set of about 2800 days
 - $\sin^2 2\theta_{13} = 0.082 \pm 0.007 (\text{stat.}) \pm 0.011 (\text{syst.})$
- precision 15.9%

- [Reference] JHEP (2019) 1500 days of nH
 - $\sin^2 2\theta_{13} = 0.086 \pm 0.008(\text{stat.}) \pm 0.014(\text{syst.})$

Presented at Nu-2024 and ICHEP2024

$\boldsymbol{\theta}_{13}$ Measurement at Double Chooz

- Double Chooz preliminary results with full data set, presented at Nu-2020
 - Using ANN to suppress accidental background
 - Total neutron capture enhanced the detection efficiency for nGd
 - Plan to finalize by end of 2024
- $\sin^2 2\theta_{13} = 0.102 \pm 0.004 (\text{stat.}) \pm 0.011 (\text{syst.})$ precision 11.8%
 - Compared to 13.3% precision in 2020 [Nat. Phys. 16, 558–564 (2020)]

Plots from Thiago Bezerra's Double Chooz talk at Nu-2020

- New nH oscillation result in <u>arXiv:2406.01007</u> released on June 3, 2024
 Previous DYB nH result: PRD 93, 072011 (2016)
 - Two independent analyses giving consistent result
 - 3.1 times more statistics (2/3 of the full data set)
 - Improvements in candidate selection, backgrounds and efficiencies, calibration...

Neutrons from (α, n) reactions and spontaneous fissions

- Gd-LS/LS/acrylic: clean, ²³⁸U and ²³²Th < 0.1 ppb, 1.1% ¹³C, O(0.05) n's/day
- PMT glass: O(100) ppb ²³⁸U/²³²Th and 20% boron, O(100) n's/day/100kg glass
- Negligible for nGd but not for nH if PMTs not well shielded from LS
 - Five Daya Bay PMTs were broken at Tsinghua to measure the Boron fraction in glass
 - Also investigated the material screening results, no other non-negligible neutron source

Phys. Rev. D 104, 092006 and arXiv:2406.01007

Neutrons from (α,n) reactions and spontaneous fissions

- Gd-LS/LS/acrylic: clean, ²³⁸U and ²³²Th < 0.1 ppb, 1.1% ¹³C, O(0.05) n's/day
- PMT glass: O(100) ppb ²³⁸U/²³²Th and 20% boron, O(100) n's/day/100kg glass
- Negligible for nGd but not for nH if PMTs not well shielded from LS
 - Five Daya Bay PMTs were broken at Tsinghua to measure the Boron fraction in glass
 - Also investigated the material screening results, no other non-negligible neutron source

Distance from P	Residual bkg in nH	
Daya Bay	20 cm	0.2/day/AD
RENO	~50 cm	<10 ⁻⁴ /day
Double Chooz	~45 cm	<10 ⁻⁴ /day

New energy response model

- Enable the first rate + shape analysis with nH-only sample
- Purpose: prediction of IBD spectrum and uncertainty study
- Adding the non-linearities on deposited energy on step-by-step basis
- Able to adjust each effect and study the resulted uncertainty

Simulated IBDs in LS volume

- The identicalness among ADs is examined and used to evaluate the ADuncorrelated uncertainties
- The total systematic uncertainty benefits from the larger statistics and new control techniques
 - Reduced from 0.57% to 0.34% in this result

- The identicalness among ADs is examined and used to evaluate the ADuncorrelated uncertainties
- The total systematic uncertainty benefits from the larger statistics and new control techniques
 - Reduced from 0.57% to 0.34% in this result

- The results with rate+shape analysis yield:
 - $\sin^2 2\theta_{13} = 0.0759^{+0.0050}_{-0.0049}$
 - From previous 15.5% precision to 6.6%
 - $\Delta m_{32}^2 = 2.72_{-0.15}^{+0.14} \times 10^{-3} \text{ eV}^2$ [NO], $-2.83_{-0.14}^{+0.15} \times 10^{-3} \text{ eV}^2$ [IO]
- nGd+nH combined result for $\sin^2 2\theta_{13}$: 0.0833 ± 0.0022

Global Comparison

- Daya Bay's nH measurement provides a sin²2θ₁₃ precision surpassed only by Daya Bay's nGd result
 - Statistical uncertainty accounts for about 46% of the total
 - 8% improvement in nGd+nH result compared to nGd-only
- nGd+nH leads to a precision measurement of sin²2θ₁₃, <u>2.6%</u> precision

Global Comparison

- Daya Bay's nH measurement provides a sin²2θ₁₃ precision surpassed only by Daya Bay's nGd result
 - Statistical uncertainty accounts for about 46% of the total
 - 8% improvement in nGd+nH result compared to nGd-only
- nGd+nH leads to a precision measurement of sin²2θ₁₃, <u>2.6%</u> precision

Consistent results from reactor and accelerator experiments

Improve Precision in $sin^2 2\theta_{13}$ to <1%

- Two ways to improve $\sin^2 2\theta_{13}$ precision to <1%
- 1. Shape distortion 4kt LS
- detector at 2.0 km baseline

- 2. Rate deficit
- 10kt LiquidO

detector at 1.1 km baseline

Requires 1% shape uncertainty and 0.5% energy scale Fulfilled by inputs of TAO and intensive calibration JHEP, 2023, 03: 072

Super Chooz: LiquidO to suppress bkgs.

Summary

- Daya Bay, RENO, and Double Chooz all stopped data taking
 - Almost equal contributions from systematics and statistics
 - Side-by-side comparison at Daya Bay validated the systematics control
- Daya Bay leads the precision measurement of $sin^2 2\theta_{13}$
 - and $|\Delta m^2_{32}|$ in reactor side
- Expecting more results
 - Full nH data set in Daya Bay and RENO, final results from Double Chooz
- In the future, precision improvement of $\sin^2 2\theta_{13}$ to <1% using either shape distortion or rate deficit is possible

谢谢!

Backup

Double Chooz's full data set

Detector	Run Time (days)	Factor To Nature Physics Dataset
Far Alone (Reactor-ON)	481.12	1.00
Far Alone (Reactor-OFF)	7.57	1.00
Far (Reactor-ON)	868.11	2.26
Near (Reactor-ON)	788.73	2.28
Far (Reactor-OFF)	23.54	NEW
Near (Reactor-OFF)	23.12	NEW

Double Chooz's full data set

