JUNO探测技术研发与探测器建设进展

JUNO

IHEP, 2024/8/14

张永鹏

代表JUNO合作组

中国物理学会高能物理分会第十四届全国粒子物理学术会议, 8/13-8/18, 2024

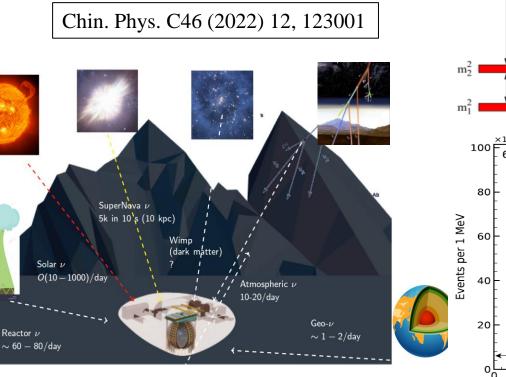
- Jiangmen Underground Neutrino Observatory (JUNO) is located in Jiangmen city, Guangdong province of South China:
- ~ 53 km from the Yangjiang and Taishan Nuclear Power Plants (total power: 26.6 GW)
- ~650 m underground
- Approved in 2013, Construction in 2015-2024

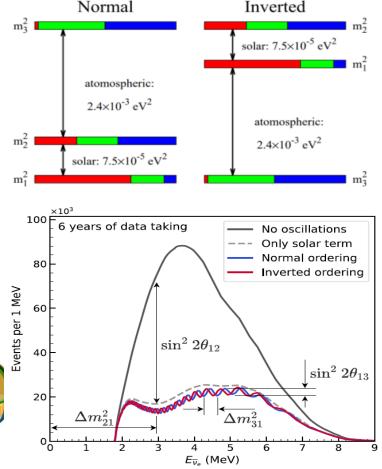
Collaboration established in 2014

• now more than 700 collaborators from 74 institutions in 17 countries/regions

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	Tsinghua U.	Germany	U. Tuebingen
Belgium	Universite libre de Bruxelles	China	UCAS	Italy	INFN Catania
Brazil	PUC	China	USTC	Italy	INFN di Frascati
Brazil	UEL	China	U. of South China	Italy	INFN-Ferrara
Chile	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
hina 🥣	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China 📃	Xiamen University	Italy	INFN-Perugia
China	CAGS	China 🥠	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China 🧾	NUDT	Pakistan	PINSTECH (PAEC)
China 🚽	CIAE	China	CUG-Beijing	Russia	INR Moscow
China 📃	DGUT	China	ECUT-Nanchang City	Russia	JINR
China	Guangxi U.	China	CDUT-Chengdu	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU
China	NCEPU	France	Subatech Nantes	Thailand	SUT
China	Pekin U.	Germany	RWTH Aachen U.	U.K.	U. Liverpool
China	Shandong U.	Germany	TUM	U.K.	U. Warwick
China	Shanghai JT U.	Germany	U. Hamburg	USA	UMD-G
China	IGG-Beijing	Germany	GSI	USA	UC Irvine
China	SYSU	Germany	U. Mainz		

Neutrino Mass Ordering (NMO)measurement


arXiv:2405.18008 (2024)


-Reactor: JUNO will determine NMO with 3σ significance in 6 years exposure

-Atmospheric neutrino: Combined analysis with reactor further improve the NMO sensitivity

- Precision measurement of oscillation parameters
 - for sin²2 θ_{12} , Δm_{21}^2 , $|\Delta m_{32}^2|$, world-leading precision in 100 days,
 - and precision <0.5% in 6 years
- Many other physics programs
 - Solar neutrinos
 - Geo-neutrinos
 - Supernova burst neutrinos
 - Supernova relic neutrinos
 - Exotic neutrinos
 - Nucleon decay

Details in Runze Zhao's and Yibing Zhang's talks

JUNO Site

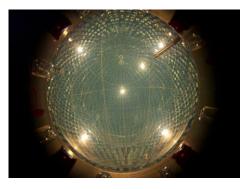
Surface buildings / campus

- Office / Dorm
- Surface Assembly Building
- LAB storage (5 kton)
- Water purification / Nitrogen
- Computing
- Power station
- Cable train

Vertical Shaft, 564 m put into use in 2023

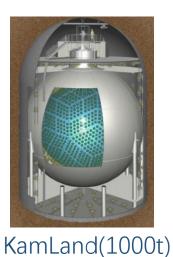
Slope tunnel, 1266 m

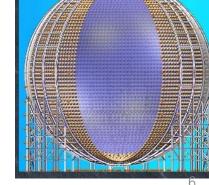
~ 650 m R_µ ~ 0.004 Hz/m² <E_µ> ~ 207 GeV



- Main requirement: Target mass of 20 kton liquid scintillator, Energy resolution 3%@ 1MeV
- Unprecedented liquid scintillator neutrino experiment

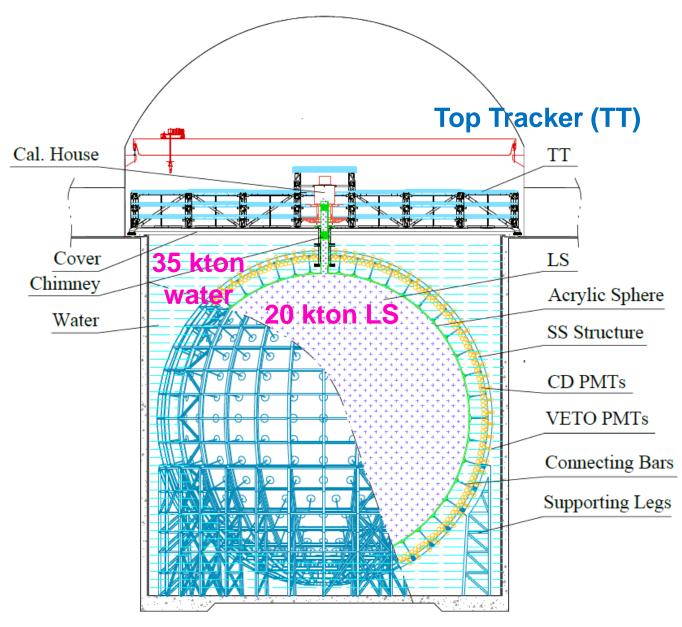
	Daya Bay	BOREXINO	SNO+	KamLAND	JUNO
Target Mass	8* 20 ton	300 ton	780 ton	1 kton	20 kton
Number of PMTs	8 *192 8-in.	2212 8-in.	~10000 8-in.	1325 20-in. + 554 17-in.	20012 20-in.+ 25600 3-in.
Photoelectron Yield (p.e./MeV)	160	450	520	250	>1300
Photocathode Coverage	12%	30%	50%	34%	78%
Energy Resolution@1MeV	7.5%	5%	6%	6%	3%
Energy calibration	<1%	1%	≤ 1%	2%	≤ 1 %


Daya Bay (20x8t)



Borexino(300t)

SNO+ (780t)



JUNO (20 kť)

JUNO Detector

Acrylic Sphere:

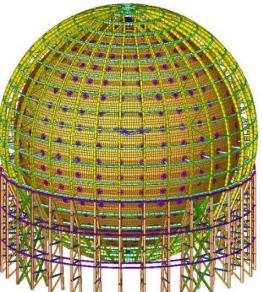
Inner Diameter (ID): 35.4 m

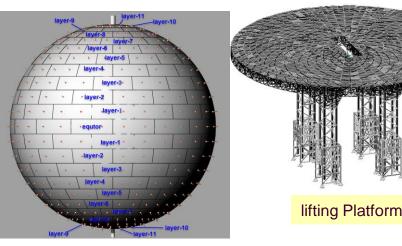
Thickness:12 cm

Stainless Steel (SS) Structure:

ID: 40.1 m, Outer Diameter (OD): 41.1 m 17612 20-inch PMTs, 25600 3-inch PMTs Water pool:

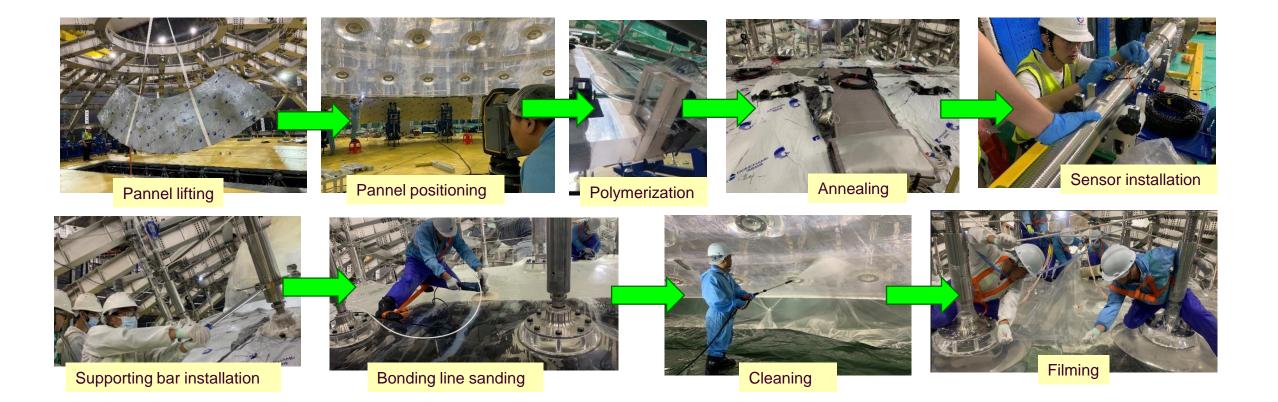
ID: 43.5 m, Height: 44 m, Depth: 43.5 m 2400 20-inch PMTs


Central detector


arXiv: 2311.17314 (2023)

Φ 35.4 m acrylic sphere supported by $~\Phi$ 41.1 m SS structure via 590 supporting bars

- ♦ Acrylic sphere
 - made by 263 acrylic panels, 23 layers
 - good transparency(>96% in water), and low background (< 1 ppt for U/Th)
- ◆ Stainless-steel structure (SS structure)
 - latticed shell made by latitude and longitude beams
 - 30 supporting legs fixed on the water pool base
 - 800 tons low-radioactivity stainless-steel (type 304, radio-impurity <1ppb)
 - small deviation in radius after survey
 - ✓ design: 20550 mm; survey: 20530 mm; deviation: <20mm (1‰)</p>
- ◆ Acrylic vessel construction on-going (critical path, Jul. 2022 now)
 - currently 19/23 finished
 - a lifting platform used, height and diameter changeable
 - Panels bonded by the bulk-polymerization technique

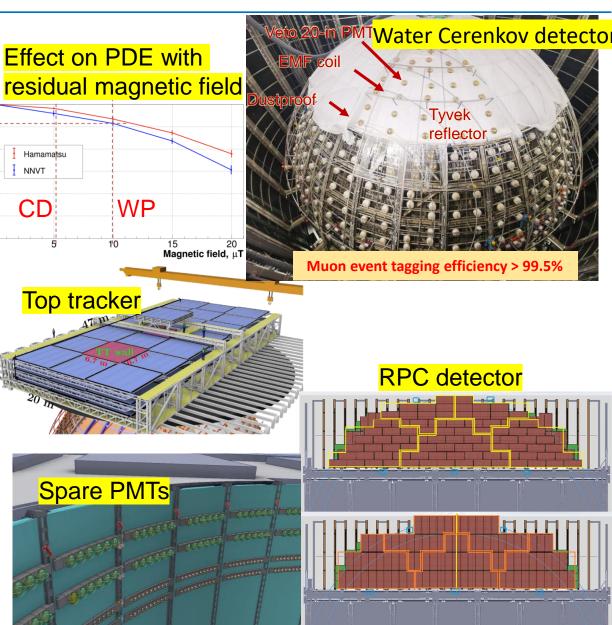

- Many problems solved during construction: explosive polymerization defects repairing, stress monitoring measurement, etc

Construction of acrylic sphere

Veto detector

0.9

• Earth Magnetic Field (EMF) compensation coil


⇒ Big effect on the 20 inch PMT performance and detection efficiency losing up to 60% w/ EMF

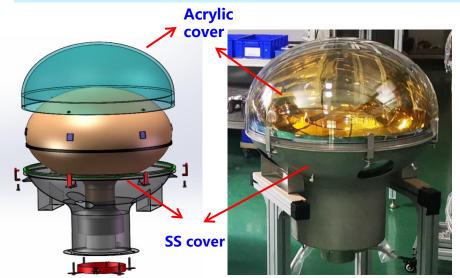
Water Cherenkov detector

- \Rightarrow 35 kton water to shield backgrounds from the rock
- ⇒ Instrumented w/ 2400 20-inch PMTs
- ⇒ Water pool lining: 5 mm HDPE (black) to keep the clean water and to stop Rn from the rock
- \Rightarrow Sealed cover and filling nitrogen gas over the water surface
- \Rightarrow 100 ton/h high-purity water system installed
- $\Rightarrow Requirement: U/Th/K < 10^{-14} g/g and Rn < 10 mBq/m^3, attenuation length > 40 m, temperature controlled to (21±1) °C$

Top tracker

- ⇒ Refurbished OPERA plastic scintillators NIMA 1057 (2023) 168680
- \Rightarrow 3 layers, 63 walls of 6.7 m * 6.7 m
- \Rightarrow ~60% coverage on the top
- \Rightarrow Angular resolution: $\Delta \theta \sim 0.2^{\circ}$ (median value)
- Plan to install all spare PMTs on top wall of the water pool and reuse RPC from ARGO-YBJ to improve performance of atmospheric neutrino analysis

JUNO PMT

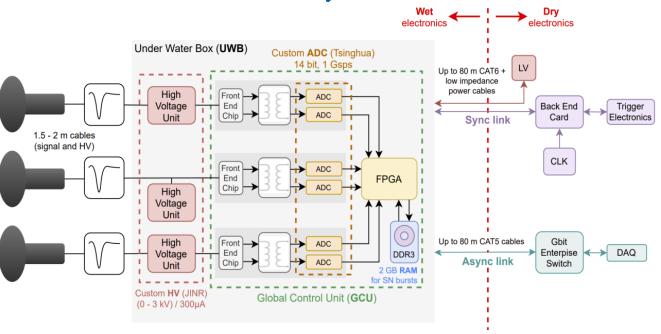

- 20-inch PMT: 15,012 MCP-PMT (NNVT) + 5,000 Dynode PMT(Hamamatsu)
 3-inch PMT: 25,600 Dynode PMT (HZC XP72B22)
 - \Rightarrow All PMTs delivered and their performance (HV, SPE, PDE, DCR, TTS, P/V) tested OK
- ◆ Water proof potting done: failure rate < 0.5%/6 years
- Implosion protection: acrylic top & SS bottom (JINST 18 (2023), P02013)

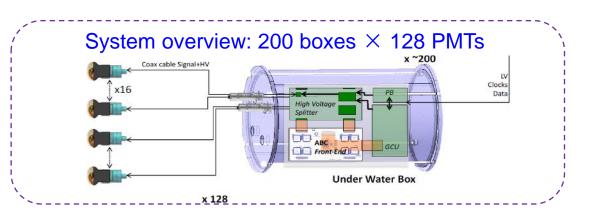
 \Rightarrow Mass production completed

	LPMT	SPMT (3-in)			
	Hamamatsu	NNVT	HZC		
Quantit	5,000	15,012	25,600		
Charge Coll	Dynode	MCP	Dynode		
Photon Det	28.5%	30.1%	24.9%		
Dark Count Rate	Bare	15.3	49.3	0.5	
[kHz]	Potted	17.0	31.2		
Transit Time Spre	1.3	7.0	1.6		
Coverag	75	3%			
Referen	Eur.Phys (2022) 1	NIM.A 1005 (2021) 165347			

Synergetic 20-inch and 3-inch PMT systems to ensure energy resolution and charge linearity

Inner view of PMTs

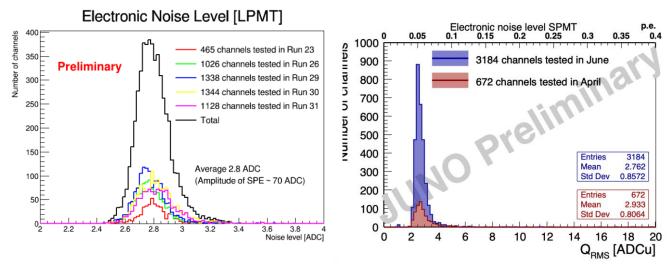



Electronics

◆ LPMT electronics: 20012 channels

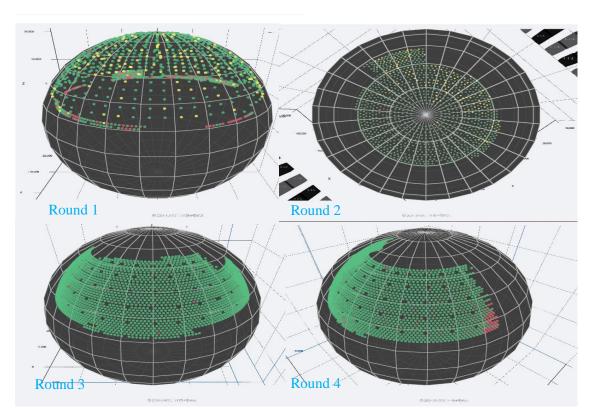
- ⇒ Dynamic range: 1- 4000 PE, Noise: <10%
 @1 PE, Resolution: <10% @1 PE, <1% @100 PE
- 1 GHz FADC (14 bit) in an underwater box (3 ch./box), connected to PMTs by water proof connectors
- Failure rate: < 0.5% / 6 years

- SPMT electronics: 25600 channels
- 200 underwater boxes, each for 128 PMTs read by ASIC Battery Cards (ABC), each with 8 CatiROC chips
- Only time/charge readout


Commissioning during installation

• Regular commissioning/joint test of PMTs, Elec., DAQ/DCS, during installation:

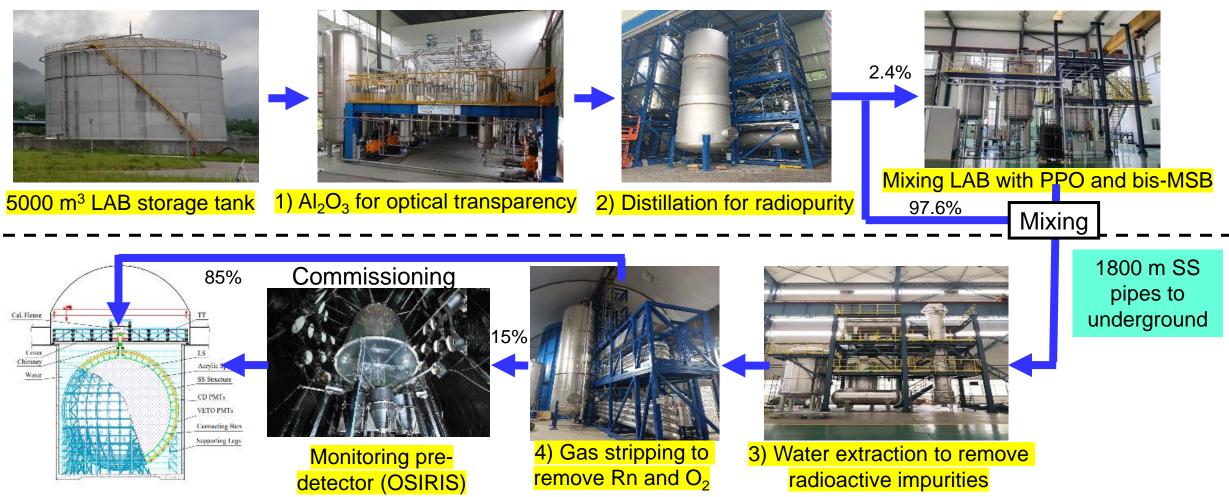
- light-on test: Elec. /trigger/DAQ/DCS joint test w/o PMTs


- Light-off test: PMT dark rate data taking and full chain test

 PMTs are working well, electronics shows very low noise (<5% of SPE), and good shielding and grounding;

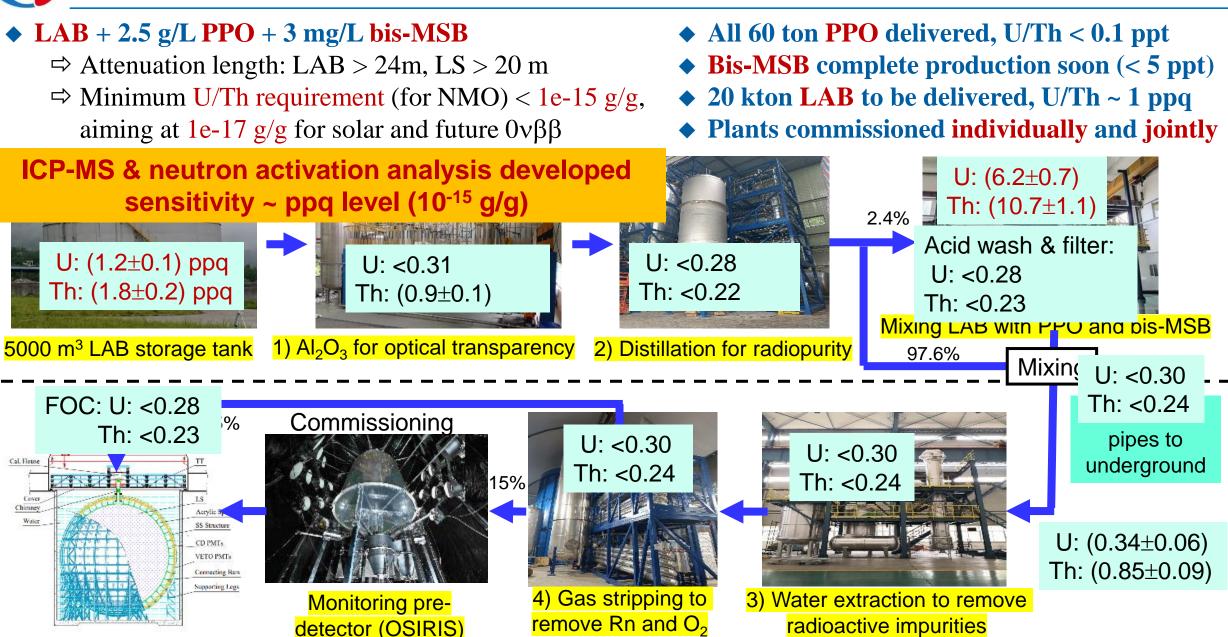
LPMT Noise level ~0.04 PE

SPMT Noise level ~0.05 PE

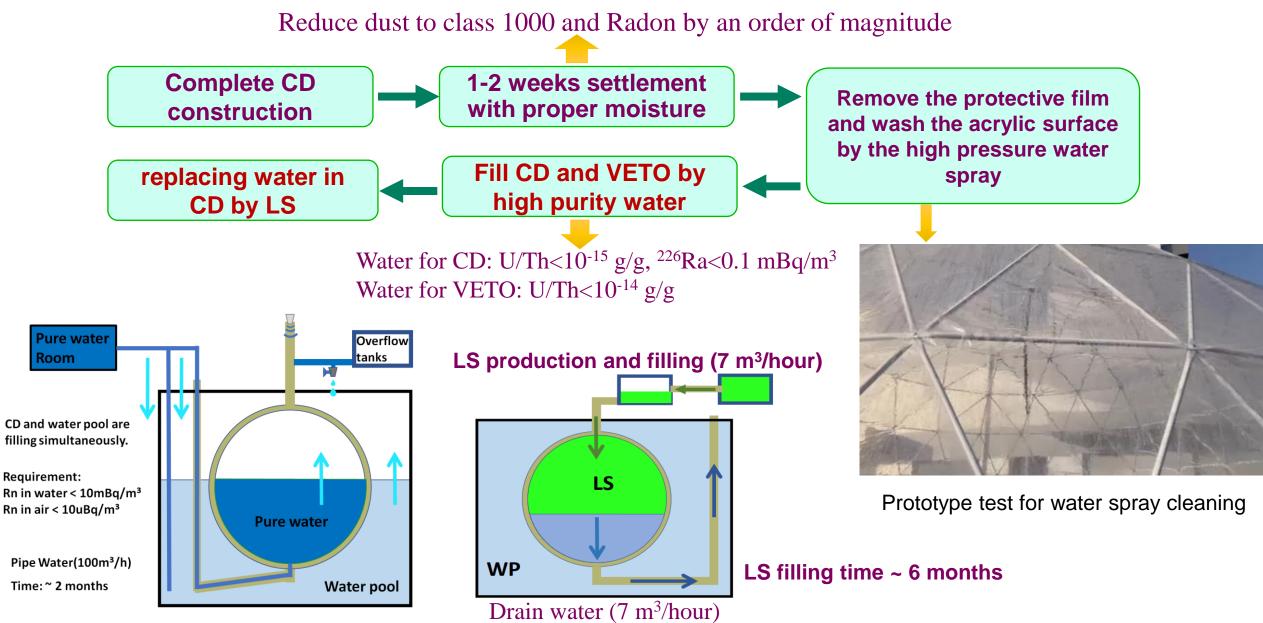

Online display of PMT Dark Count Rate

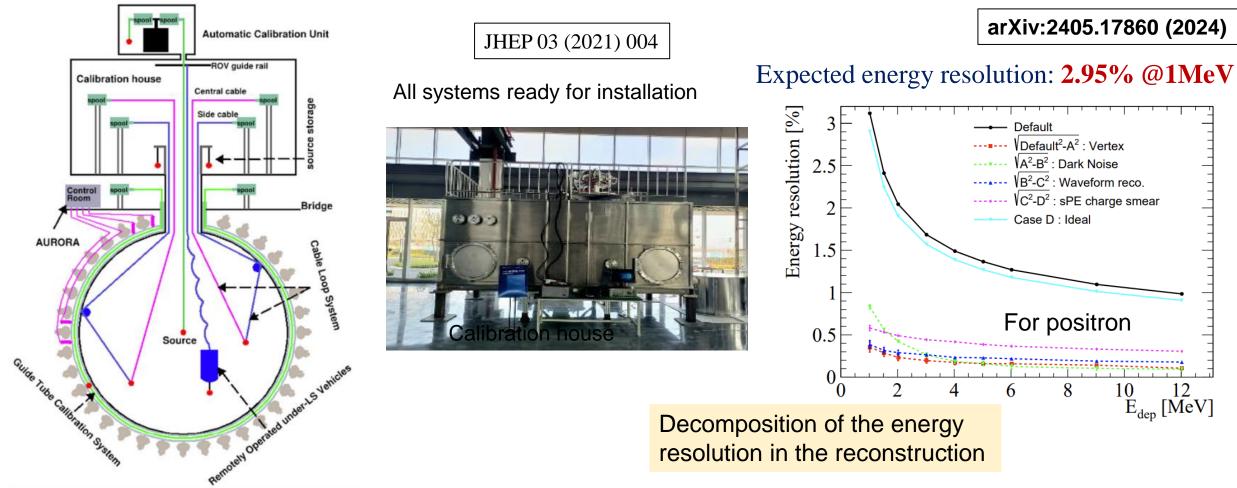
Liquid Scintillator

◆ LAB + 2.5 g/L PPO + 3 mg/L bis-MSB


- \Rightarrow Attenuation length: LAB > 24m, LS > 20 m
- \Rightarrow Minimum U/Th requirement (for NMO) < 1e-15 g/g, aiming at 1e-17 g/g for solar and future 0vββ
- ♦ All 60 ton PPO delivered, U/Th < 0.1 ppt</p>
- Bis-MSB complete production soon (< 5 ppt)</p>
- Plants commissioned individually and jointly
- ► 20 kton LAB to be delivered, U/Th ~ 1 ppq

Liquid Scintillator


17


Detector final cleaning plan and LS filling

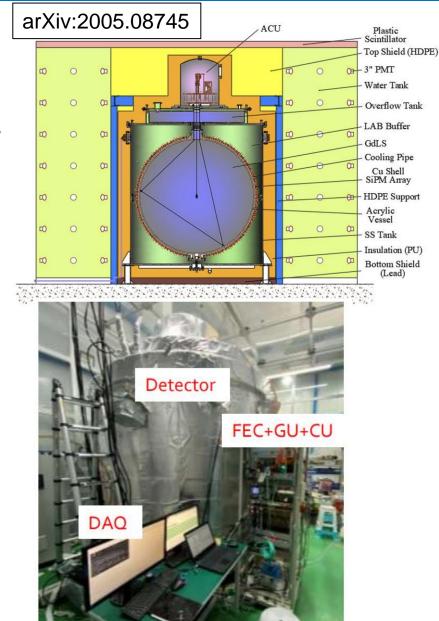
18

- Four systems for 1D, 2D, 3D scan with multiple sources
- Energy scale and non-linearity will be calibrated to <1% using γ peaks and cosmogenic ¹²B beta spectrum

JUNO-TAO(Taishan Antineutrino Observatory)

20

Main goal: Measure the reactor neutrino spectrum (as a reference to JUNO)


- ⇒ better resolution to reduce fine structure effects and spectrum uncertainties
- ⇒ Improve nuclear database

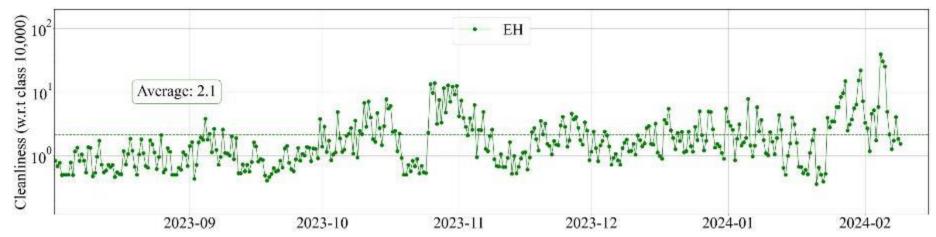
Detector features

- \Rightarrow 10 m² SiPM + 2.8 ton new type of Gd-loaded LS @-50°C
- \Rightarrow ~2000 IBDs/day@44m from the core (4.6 GW), ~10% bkg
- ⇒ Energy resolution: <2%/√E, 4500 p.e./MeV
- \Rightarrow SiPM (>94% coverage) w/ PDE > 50%
- \Rightarrow Operating at -50°C, dark rate 100k \rightarrow 100 Hz/mm²

Detector assembled at IHEP with ~100 SiPM tiles/readout (out of 4100 in total)

- ⇒ Temperature uniformity and stability OK!
- Disassembling, to be re-installed in the Taishan Nuclear Power Plant in 2024

Radiopurity control of detector materials:


- ✓ Careful material screening
- \checkmark Meticulous Monte Carlo Simulation
- ✓ Accurate detector production handling Better than spec. by 15% Good enough for reactor neutrinos
- EH average: 158 150 2023-8 2023-9 2023-10 2023-11 2023-12 2023-12 2023-12 2023-12 2023-12 2024-1

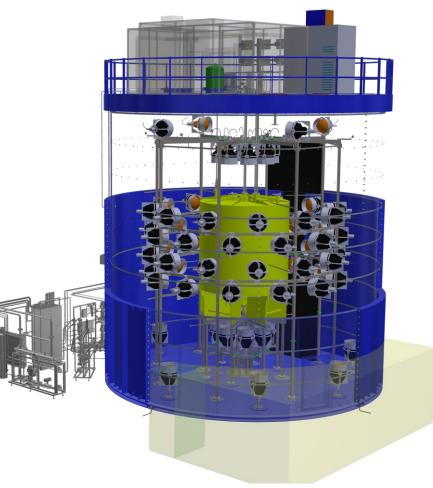
Main hal

Power Cut

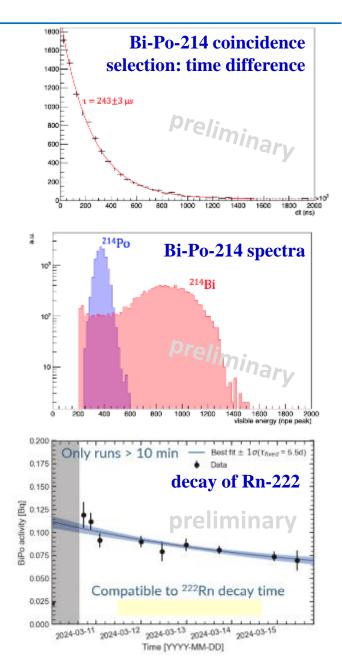
Typhoon

- Average radon and cleanliness:
 - Radon concentration: ~160 Bq/m³ in the EH, ~140 Bq/m³ in the LS hall
 - Cleanliness: class 20,000

2024-2


Summary

- JUNO construction is nearing completion after overcoming a lot of challenges
- The construction will be finished in end of 2024 and start the detector filling
- Looking forward to the data taking for the largest liquid scintillator detector


Keep digging new physics !

EPJ C 81 (2021) 11, 973

- A dedicated pre-detector to verify the radioactivity levels of LS
- ◆ 20 tons of LS in 3m-by-3m acrylic vessel, 76 MCP-PMTs, 3m of water shielding → first test run successful
- ♦ Few days: U/Th (Bi-Po) ~ 1 × 10-15 g/g (reactor baseline case)
- 2~3 weeks: U/Th (Bi-Po) ~ 1 \times 10–17 g/g (solar ideal case)
- Other radiopurity can also be measured: 14C, 210Po and 85Kr
- First batch of JUNO LS filled into the detector
 - U/Th tagging by Bi-Po-214 coincidence, which is now still dominated by 222 Rn \rightarrow have to wait several 222 Rn lifetimes (τ =5.5 days) to reach U/Th <10⁻¹⁵ g/g
 - Analysis for ¹⁴C, ²¹⁰Po, ... in progress

