# Search for WIMP Dark Matter in PandaX-4T Experiment



Yi Tao (陶奕) Shanghai Jiao Tong University (SJTU) On behalf of the PandaX Collaboration

taoyi92@sjtu.edu.cn





### **Progress of DM Direct Detection**



陶奕 中国物理学会高能物理分会(2024)

### **PandaX Collaboration**



陶奕 中国物理学会高能物理分会(2024)

### **PandaX Detectors**

- Increasing the detector sensitive target volume
- Lowering radioactive background

PandaX-I

120kg

2010-2014







PandaX start

2009

🔄 PANDA X

2015-2019

PandaX-II

**580kg** 

### PandaX: A Dual-phase Xenon TPC





- **PandaX**: Particle and Astrophysical Xenon Observatory
- Pure xenon target, enhanced DM signals, achievable liquefication temperature, high light & charge yield
- Good ER/NR discrimination by S2/S1 ratio



• 3D reconstruction rejects external background

### Outline



- Run1 data taking and running conditions/challenges
- Low-energy calibration, reconstruction, selection & efficiency
- Signal response model
- Background evaluation
- Statistical inference results for WIMP search
- Summary and outlook

### **After Commissioning**

| 2020/11<br>_<br>2021/04 | <b>Commissioning (Run 0)</b><br>95 days                                  |
|-------------------------|--------------------------------------------------------------------------|
| 2021/07<br>_<br>2021/10 | <b>Tritium removal</b> xenon distillation, gas flushing, etc             |
| 2021/11<br>_<br>2022/05 | <b>Physics run (Run 1)</b><br>164 days                                   |
| 2022/09<br>_<br>2023/12 | <b>CJPL B2 hall construction</b><br>xenon recuperation, detector upgrade |
| Current<br>Status       | Resuming physics data-taking                                             |



- > WIMP search: Combined blind analysis of Run0 and Run1.
- Total exposure: 1.54 tonne-year

### **Run1 Data Taking & Challenges**

- Gate -6kV, Cathode -16kV (Gate trip once)
- $\succ$  e<sup>-</sup>-lifetime monitoring through  $\alpha$  events
  - maximum reaches 1800 us
  - sensitive to operation condition
- Failure of liquid level controlling
  - liquid level sensitive to the circulation flow rate
  - monitoring through the drift time of gate events and single electron gain (SEG)
  - dividing into 6 subsets accordingly
- Additional malfunctioned PMTs (see next)
- Improvements and updates
  - Charge correction
  - Position correction



### Additional "Off-PMT" Problem

400











#### $\succ$ Additional non-functioning PMT channels at top, with 8 channels sharing the same negative HV due to the short of the photocathode.

- Concentrated in the same top area, affecting event reconstruction and selection (TBA, position reconstruction, etc.).
- Solution in Run2: During the detector upgrade, repair the non-functioning PMTs and distribute them as evenly as possible to reduce the coupling of adjacent channels.

# **Charge Spatial Uniformity Correction**





- <sup>83m</sup>Kr (41.5 keV): internal conversion e<sup>-</sup>
- ➢ Binned map → Unbinned map
  - Perform a 9<sup>th</sup>-degree polynomial function fit  $\sum_{ijk} c_{ijk} x^i y^j z^k$  where *i*, *j*, *k* = 0, ... 9



S2 also adopts z-dependent charge correction according to its e<sup>-</sup> lifetime

### **Charge Temporal Variation Correction**

- C:
- Due to the change in liquid level over time, both the light signals and ionization signals fluctuate over time.
- Method: Run-by-run correction utilizing <sup>222</sup>Rn 5.6MeV α event (mono-energy, existing over time)



#### Ionization charge before/after correction

### **Position Correction**



### Low-energy ER/NR Calibration



- End-of-run low-E ER/NR calibration (ER: <sup>220/222</sup>Rn, NR: DD + <sup>241</sup>AmBe)
- Determine all selection criteria, efficiencies and charge biases (together with waveform simulation)
- > 0.3% ER leak ratio in Rn calibration  $\rightarrow$  good ER/NR separation

### **Quality Cuts & Efficiencies**

### **Quality selection cuts:**

- ➢ S1- and S2-related, waveform cleanness
- Relaxed version for "off-PMT" region

# Total efficiencies as a function of energy: plateau ~90%

Quality

- > ROI
  - S1<sup>c</sup>: 2-135 PE,  $\geq$ 2-hit coincidence
  - S2<sup>raw</sup>: 120-20,000 PE
- Reconstruction
  - Signal classification (tagging)
  - ➤ S1-S2 pairing



陶奕 中国物理学会高能物理分会(2024)

### PandaX-4T Signal Response Model

- Signal Response of the PandaX-4T detector (Run0) & Run1): How deposited energy converts to detectable signals
  - Light yield & Charge yield
  - Recombination fluctuation
- Compare w/ nominal NEST
  - the mean recombination fraction  $\langle r \rangle$  is adjusted by adding a 3rd-order Legendre polynomial multiplied by an exponential function P
  - the recombination fluctuation  $\Delta r$  is scaled by a factor  $\lambda$

 $\langle r \rangle(\xi) = \langle r \rangle_0(\xi) + P_3(\xi/\xi_{\text{norm}}; p_0, p_1, p_2, p_3) \cdot e^{-\xi/\xi_{\text{norm}}}$  $\Delta r(\xi) = \Delta r_0(\xi) \cdot \lambda,$ 

- Run0+Run1 simultaneous fit to all ER/NR calibration data (DD + AmBe + Rn)
- Data-driven determined detector effects, corrections, etc.





### P4-NEST vs. Data: Run1 DD



Comparing the observed calibration data with the signal response model, a good agreement has been achieved.



### **Background Budget**





### **Tritium Level (after unblinding)**

- Significant reduction from Run0 to Run1 (~8 times)
- Consistent with S1-only estimation used before unblinding
- Floating in the final PLR fit





### <sup>214</sup>Pb Background

- <sup>214</sup>Pb: daughter nuclei of <sup>222</sup>Rn
- Select <sup>222</sup>Rn alpha events as a monitor
- <sup>222</sup>Rn level varies with running condition

| Rn-222 level | [µBq/kg]                        |
|--------------|---------------------------------|
| Run 0        | 7.07 ± 0.02(stat.) ± 0.23(sys.) |
| Run 1        | 8.67 ± 0.01(stat.) ± 0.27(sys.) |

• <sup>214</sup>Pb is derived from spectrum fitting (0.2-1MeV)





陶奕 中国物理学会高能物理分会(2024)

set2

set3

set4

set5

set6

### <sup>85</sup>Kr Background

- Residual impurity in product xenon
- Identified through  $\beta$ - $\gamma$  coincidence selection



Kr/Xe [ppt]

### Surface Background

- ER events, whose S2 suppressed by the TPC surface
- Estimate the radial distribution by <sup>210</sup>Po alpha events
- Good consistency with data outside blind region

| Surface events in fiducial volume |             |  |  |  |
|-----------------------------------|-------------|--|--|--|
| Run0                              | 0.09 ± 0.06 |  |  |  |
| Run1                              | 0.17 ± 0.11 |  |  |  |



### **Neutron Background**

### > Combine 3 approaches to estimate (weighted average):

( n

<sup>131</sup>Xe

capture

GEANT4 + signal model



High energy  $\gamma$  / neutron ratio

Multi-scatter / single-scatter ratio



$$N_{
m neutron} = N_{\gamma} * r_{
m n/\gamma}$$

$$N_{\rm neutron} = N_{MS} * r_{SS/MS}$$

| Unit: counts         | Run0            | Run1            |
|----------------------|-----------------|-----------------|
| Pure Neutron         | $0.44 \pm 0.13$ | $0.81 \pm 0.17$ |
| Neutron X            | $0.19 \pm 0.06$ | $0.29 \pm 0.06$ |
| <b>Total Neutron</b> | $0.63 \pm 0.18$ | $1.10 \pm 0.24$ |

陶奕 中国物理学会高能物理分会(2024)



#### 2024/8/15

#### 陶奕 中国物理学会高能物理分会(2024)

# Accidental Background

- Accidental coincidence (AC): The pairing of random isolated S1s and S2s that can mimic real physical single-scatters
- Use random pair MC and "off-window" events to determine unphysical AC background
- The AC background is underestimated (~2 times) due to an inconsistent acceptance cut on the scrambled data (found after unblinding, yet no further selection cuts are added/tuned).

| Unit: counts         | Run0       | Run1       |
|----------------------|------------|------------|
| Accidental (updated) | 11.3 ± 3.4 | 12.7 ± 3.8 |







陶奕 中国物理学会高能物理分会(2024)

### SI Upper Limit & Sensitivity Band

arXiv: 2408.00664

### Fully blind analysis Run0+Run1:

- Scanning WIMP mass from 5 to 10000 GeV/c<sup>2</sup>
- $\rightarrow$  No significant excess!
- +1 $\sigma$  upward fluctuation: < 8GeV/c<sup>2</sup> Global significance (after LEE correction):  $Z^{global} = 1.2$
- State-of-the-art: >100 GeV/c<sup>2</sup>
- Lowest upper limit: 1.6×10<sup>-47</sup> cm<sup>2</sup> at 40 GeV/c<sup>2</sup> after -1σ power-constraint



### **SD Upper Limit & Sensitivity Band**

• Refresh spin-dependent constraints for Xe-based experiment



### **Summary and Outlook**



- A combined blind analysis of PandaX-4T Run0+Run1 for WIMP search comes out
- No significant excess and we present the latest stringent upper limit for DM mass above 100 GeV/c<sup>2</sup>
- Studies of more physical topics are ongoing, and we keep accumulating more data & Stay tuned!

# Thank you for your attention!

# Backups

### **PMT Gain Self-calibration**



### • Previous

- Approach: Weekly gain calibration with LED light.
- Problem: The response to changes in gain (due to aging, etc.) is not timely enough.
- New:
  - Approach: Self-calibration via the fitted single photon peak from its own run.



### PandaX-4T Signal Response Model

- > To study how deposited energy converts to the detectable signals
- Run0+Run1 simultaneous fit to ER/NR data (DD+AmBe+Rn)
- Tune light & charge yields





 $E_{\rm ee} = W_q \left( \frac{Q_{S1}^c}{q_1} + \frac{Q_{S2_{\rm b}}^c}{q_{2_{\rm b}}} \right)$ 

 $Q_{S2_b}^{c}/\xi$  [PE/keV]

### PandaX-4T Signal Response Model

### Consider multiple-scatter (MS) process



### Best Fit Result (Run0+Run1)



PLR fit: with unbinned likelihood with all signal/background PDFs in (S1, S2<sub>b</sub>)

#### Best fit DM counts:

- 3.7 w/ 5 GeV WIMP
- 0 w/ 40 GeV WIMP



### **Distribution of DM Candidates**

S1

 $\log_{10} (S2_{
m b}/$ 

1.0

WIMP (1000 GeV)

6 8 10 12

Tritium  $\beta^-$ 

Candidate Index

Other ER

<sup>127</sup>Xe L-shell EC

Neutron

<sup>124</sup>Xe LL-shell ECEC

Accidental

 $^{8}B CE \nu NS$ 

Surface

14 16 18 20 22

Candidate Index

 $10^{2}$ 







> 24 (12+12) below NR median events

> Uniformly distributed in the FV.

S1 [PE]

101

 $10^{1}$ 

S1 [PE]

**NR** median

ER 5%-95% quantiles

NR 99.5% acceptance

Total: 2490

2.5

 $\log_{10}\left(S2_{
m b}/S1
ight)$ 

1.0



 some upward fluctuation for DM mass < 8GeV, and some downward fluctuation for high mass DM





- Standard WIMP searches
  - Spin-independent (SI)
  - Spin-dependent (SD)
- Luminance of DM
- Several novel approaches
  - Lower threshold (S2-only)
  - Migdal effect
  - $-\chi$ -v conversion
  - Boosted mechanism



- Standard WIMP searches
  - Spin-independent (SI)
  - Spin-dependent (SD)
- Luminance of DM
- Several novel approaches
  - Lower threshold (S2-only)
  - Migdal effect
  - x-v conversion
  - Boosted mechanism



陶奕 中国物理学会高能物理分会(2024)



- Standard WIMP searches
  - Spin-independent (SI)
  - Spin-dependent (SD)
- Luminance of DM
- Several novel approaches
  - Lower threshold (S2-only)
  - Migdal effect
  - x-v conversion
  - Boosted mechanism

- First experimental constraints on DM charge radius:
   4 orders of magnitude than the neutrino
- Up to 3 10 times improvement for other electromagnetic properties



X. Ning et al. **Nature** 618 (2023)

陶奕 中国物理学会高能物理分会(2024)

**DEAP-3600** 

- Standard WIMP searches
  - Spin-independent (SI)
  - Spin-dependent (SD)
- Luminance of DM
- Several novel approaches
  - Lower threshold (S2-only)
  - Migdal effect
  - x-v conversion
  - Boosted mechanism



10

D. Huang et al. PRL 131, 191002 (2023)

10

 $10^{2}$ 

 $m_{\gamma} [MeV/c^2]$ 

陶奕 中国物理学会高能物理分会(2024)

 $10^{-41}$ 

0.2 0.3

Dark-matter mass [GeV/c<sup>2</sup>]

0.1

 $10^{3}$ 

### – Spin-independent (SI)

- Spin-dependent (SD)
- Luminance of DM
- Several novel approaches

Standard WIMP searches

- Lower threshold (S2-only)
- Migdal effect
- $-\chi$ -v conversion
- Boosted mechanism
  - Overcome detection threshold



陶奕 中国物理学会高能物理分会(2024)

X. Ning et al. PRL 131, 041001 (2023)

arXiv: 2403.08361