DESIY1: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations 中国物理学会高能物理分会第十四届全国粒子物理学术会议(2024)

Ting Tan (Postdoc at CEA Saclay) On behalf of the DESI collaboration

References (arXiv): 2404.03002, 2404.03000, 2404.03001

The accelerated expanding universe

ACDM model

- Dark matter (26.2%)
- Baryonic matter (4.9%)
- Dark energy (68.9%)
- Radiation (~0.01%)
- Curvature (flat)

3

The accelerated expanding universe

U.S. Department of Energy Office of Science

a: the scale factor of the universe (a₀ refers to the current time) redshift z: expansion factor of the universe: $1 + z = \frac{a_0}{a}$

^a Baryon Acoustic Oscillations (BAO)

U.S. Department of Energy Office of Science

Sound waves in primordial plasma:

Eisenstein, Seo et al. 2007

Baryon Acoustic Oscillations (BAO)

U.S. Department of Energy Office of Science

At recombination (z~1000),

- Plasma changes from optically thick to optically thin.
- Baryons decouple from photons.
- Sound speed of gas decreases.
- The traveling wave stalls.

Eisenstein, Seo et al. 2007

A residual spherical peak in clustering of galaxies
→ the wave has travelled before the recombination
→ the sound horizon scale at recombination (~150 Mpc).

SPECTROSCOPIC Measuring BAO using different tracers

U.S. Department of Energy Office of Science

Measurement of BAO: A peak in the two point correlation function (2PCF) of matter tracers, such as galaxies, quasars, voids, Lyα forests.

7

DARK ENERGY SPECTROSCOPIC INSTRUMENT

Mayall 4m telescope @ Kitt Peak (AZ)

U.S. Department of Energy Office of Science

Dark Energy Spectroscopic Instrument

40 million galaxies and quasars

Credits: DESI collaboration

DARK ENERGY SPECTROSCOPIC INSTRUMENT 2-point correlation functions of U.S. Department of Energy Office of Science DESI tracers

Credits: DESI collaboration

The Lyman- α Forest

U.S. Department of Energy Office of Science

credit: Andrew Pontzen

quasar

- Absorption in QSO spectra by neutral hydrogen in the intergalactic medium

$$F = e^{-\tau}$$

 $\tau \propto n_{HI}$

 The transmitted flux fraction F is a cosmological probe of the fluctuation in the neutral hydrogen density

Credits: DESI collaboration

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science

^{IC} DESI Y1 BAO

U.S. Department of Energy Office of Science

^c DESI Y1 BAO

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science

^c DESI Y1 BAO

U.S. Department of Energy Office of Science

Combined BAO result in ACDM

U.S. Department of Energy Office of Science

DESI Y1 BAO consistent with:

- SDSS BAO (eBOSS 2020)
- CMB (primary: Planck 2018; lensing: Planck PR4 + ACT DR6)

DESI and CMB are consistent at 1.9σ -level

Combined fit DESI + CMB:

 $\Omega_m = 0.3069 \pm 0.0050 \ (1.6\%)$

Hubble constant in ACDM

U.S. Department of Energy Office of Science

 $H_0 r_d = h \times f(\Omega_m h^2, \Omega_b h^2)$

- Can use BBN to measure Ω_{h}
- θ_{*}: measured acoustic peak position in CMB (expected to be more robust and model-independent than whole CMB fit outputs)
 - Consistent with SDSS
 - In agreement with CMB
 - In 3.7 σ tension with SH0ES

BAO measurements: dark energy

U.S. Department of Energy Office of Science

Dark energy equation of state:

 $P = w\rho$

• w = constant

BAO measurements: dark energy

U.S. Department of Energy Office of Science

Dark energy equation of state:

 $P = w\rho$

• CPL parameterization: $w(a) = w_0 + (1-a)w_a$

U.S. Department of Energy Office of Science

 $f_{\rm DE}(z)$ depends on its equation of state: $w(z) = rac{p(z)}{
ho(z)}$

ACDM: w = -1

Three **SN measurements** are available: Pantheon+ (2022), Union3 (2023), DES-Y5 (2024)

Assuming a constant EoS, DESI BAO is fully compatible with a cosmological constant

U.S. Department of Energy Office of Science

The previous conclusion changes when considering a time-varying equation of state:

 $w(z) = w_0 + \frac{z}{1+z}w_a$ (CPL parametrization)

- DESI BAO alone has poor constraining power ٠
- DESI + CMB \Rightarrow 2.6 σ

U.S. Department of Energy Office of Science

The previous conclusion changes when considering a time-varying equation of state:

 $w(z) = w_0 + \frac{z}{1+z}w_a$ (CPL parametrization)

- DESI BAO alone has poor constraining power
- DESI + CMB \Rightarrow 2.6 σ
- DESI + CMB + supernovae \Rightarrow from 2.5 σ to 3.9 σ , depending on the considered SN sample

 $w_0 > -1$, $w_a < 0$ favored

The sum of neutrino masses

CMB measurements are sensitive to Σm_{ν} But internal degeneracies limiting its precision BAO helps break degeneracies (through H₀ / $\Omega_{\rm m}$) 95% CI limits:

$$\sum m_{\nu} < 0.21 \,\mathrm{eV}$$

CMB alone, ACDM

The sum of neutrino masses

ACDM fit **CMB measurements** are sensitive to Σm_{μ} CMB (no CMB lensing) 1.0 CMB But internal degeneracies limiting its precision CMB + DESI BAO 0.8 BAO helps break degeneracies (through H_0 / Ω_m) normal mass ordering marginalized posterior 0.6 95% CI limits: inverted mass ordering 0.4 $\sum m_{\nu} < 0.21 \,\mathrm{eV}$ CMB alone, ACDM 0.2 $\sum m_{\nu} < 72 \,\mathrm{meV}$ CMB + DESI BAO, **ACDM** $0.0 \stackrel{\perp}{-} 0.00$ 0.050.10 0.15 0.20 $\sum m_{\nu} [\text{eV}]$

Some preference for normal over inverted mass ordering at the 2σ level Limit changes if adding a prior on mass ordering

The sum of neutrino masses

CMB measurements are sensitive to Σm_{ν} But internal degeneracies limiting its precision BAO helps break degeneracies (through H₀ / $\Omega_{\rm m}$) 95% CI limits:

 $\sum m_{\nu} < 0.21 \text{ eV} \qquad \text{CMB alone, } \land \text{CDM} \qquad \begin{array}{c} 0.4 \\ 0.2 \\ 0.0$

ACDM fit

Summary: results from DESI BAO Y1

U.S. Department of Energy Office of Science

- DESI already has the most precise BAO measurements ever
- DESI BAO is consistent (at the ~1.9 σ level) with CMB in flat Λ CDM
 - in flat Λ CDM, DESI prefers "small Ω_m , large H₀ (though 3.7 σ away from SH0ES), $\Sigma m_v < 72 meV$ "
- Some hint of time-varying Dark Energy equation of state
 - especially when combined with supernovae measurements
 - Σm_v < 195 meV for wCDM

https://data.desi.lbl.gov/doc/papers/

What's next?

- Cosmology measurement beyond BAO: "full-shape" results soon
- Year-3 data: data collection completed

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 72 Participating Institutions!

Linking the BAO scale to cosmology

The sound horizon r_d determines how far the sound wave of BAO traveled until recombination We use two observables $\Delta \theta$ and Δz to measure the sound horizon: $r_d = \sqrt{D_M(z)^2 \Delta \theta^2 + D_H(z)^2 \Delta z^2}$

 $\Delta \theta = \frac{D_{\rm M}(z)}{r_d} \quad \Delta z = \frac{D_{\rm H}(z)}{r_d}$ $\overline{D_{\rm M}(z)} = \int_0^z \frac{c}{H(z')} dz' \quad \text{Angular diameter distance (flat universe)}$ $D_{\rm H}(z) = \frac{c}{H(z)} \qquad \text{Hubble distance}$ BAO peak determines $D_{\rm M}(z)/r_{\rm d}$ and $D_{\rm H}(z)/r_{\rm d}$, thus giving constraints on H(z)

SPECTROSCOPIC Measuring BAO using different tracers

SDSS BAO Distance Ladder

Measurement of BAO: A peak in the two point correlation function (2PCF) of matter tracers, such as galaxies, quasars, voids, Ly α forests.

The previous conclusion changes when considering a time-varying equation of state:

 $w(z) = w_0 + \frac{z}{1+z}w_a$ (CPL parametrization)

- DESI BAO alone has poor constraining power
- DESI + CMB \Rightarrow 2.6 σ
- DESI + CMB + supernovae \Rightarrow from 2.5 σ to 3.9 σ , depending on the considered SN sample

 $w_0 > -1$, $w_a < 0$ favored

