The GAPS Experiment: Indirect Dark Matter Searches with Low-energy Cosmic-ray Antinuclei

On Behalf of the GAPS Collaboration August 15th, 2024

> Photo from 33 km up in the air! Prototype GAPS (pGAPS) balloon flight from Taiki, Japan in June 2012

The GAPS Mission

□ GAPS=General AntiParticle Spectrometer

- Antarctic balloon experiment
- Unique sensitivity to *low-energy cosmic antinuclei* using novel exotic atom decay signatures: X-rays + charged particles
- □ Primary goal: low-energy (KE≲0.25 GeV/n) Antideuteron as signature of new physics.
 - Can probe many general dark matter models.
- + High statistics measurement of low-energy *Antiproton* and open sensitivity to *Antihelium*.

^{*}Balloon photo from Word View

First Antarctic balloon flight late-2024, and two follow-up flights planned.

Low-energy \overline{d} : clean signature of new physics

BESS 97-00, 95% C.L. excl. flux [(s m²sr GeV/n)⁻¹] 10 d BESS-Polar II. 95% C.L 10⁻⁵ dark matter \overline{d} signal d. GAPS 10⁻⁶ ⊧ 105d proj., 3o disc. 10⁻⁷ 10⁻⁸ astrophysical \overline{d} background 10⁻⁹ d̄, χχ→ bb̄, 70GeV ___d̄, secondary ___d̄, tertiary **10⁻¹⁰** 10⁻¹ 10 kinetic energy [GeV/n] **GAPS** energy range

P. von Doetinchem, K. Perez et al., JCAP08 (2020) 035

GAPS antideuterons: A generic *new physics* signature with *essentially zero* conventional astrophysical background!

sensitivity will be ~2 orders of magnitude below the current best limits.

Any antideuteron signal needs to be compatible with antiproton constraints!

- \Box ~500 antiprotons (\leq 0.25 GeV/*n*) for each flight
 - BESS : 29 at ~0.2 GeV
 - PAMELA: 7 at ~0.25 GeV
 - AMS-02: E>0.25 GeV

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) *Time-of-flight* system: measures velocity, incoming angle and dE/dx, fast trigger

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) *Time-of-flight* system: measures velocity, incoming angle and dE/dx, fast trigger

Si(Li) tracker:

• Slows/captures an incoming antiparticle

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) *Time-of-flight* system: measures velocity, incoming angle and dE/dx, fast trigger

Si(Li) tracker:

 Slows/captures an incoming antiparticle into an exotic atom

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) *Time-of-flight* system: measures velocity, incoming angle and dE/dx, fast trigger

Si(Li) tracker:

- Slows/captures an incoming antiparticle into an exotic atom
- Measures the decay X-rays

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) *Time-of-flight* system: measures velocity, incoming angle and dE/dx, fast trigger, tracks of outgoing particles

Si(Li) tracker:

- Slows/captures an incoming antiparticle into an exotic atom
- Measures the decay X-rays
- Tracks the annihilated products (*charge* $\pi \& p$)

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) *Time-of-flight* system: measures velocity, incoming angle and dE/dx, fast trigger, tracks of outgoing particles

Si(Li) tracker acts as:

- <u>**Target**</u> to slow/capture an incoming antiparticle into an *exotic atom*
- <u>X-ray Spectrometer</u> to measure the decay X-rays
- **Particle Tracker** to measure the resulting dE/dX, stopping depth and annihilated hadrons

Antideuteron event topology in the simulation with the GAPS full instrument:

R. Munini et al. (GAPS), Astropart. Phys. 102640 (2021).

- Red line: the reconstruction of the primary antideuteron
- Black lines: reconstructed secondary tracks from the stopping vertex inside the tracker
- **Colored boxes**: energy depositions in the sensitive detector volumes

On a balloon!!

GAPS' balloon nature constraints: *power*, *weight*, *size*, *temperature*...

GAPS Scientific balloon payload:

Size ~3×3×2 m, mass ~2.5 ton, power ~1.4 kW

□ Time-of-Flight (TOF)

- Near-hermetic containment of tracker
- Velocity, trajectory and dE/dx measurement
- High-speed trigger and veto

□ Si(Li) Tracker → Led by SJTU

- Target to capture light nuclei \leq 0.25 GeV/*n*
- $\circ~$ Tracker for primary and secondary hadrons
- Spectrometer for de-excitation X-rays

□ Thermal System

Oscillating Heat Pipe for tracker cooling

Support instrumentation

 \circ Electronics, Solar panels, Gondola mechanics

Recovered after each flight

GAPS Key Instrument-Si(Li) Tracker

Preamp FWHM [keV]

1.0

All Si(Li) detectors have been calibrated and integrated into the tracker!!

GAPS Key Instrument-Si(Li) Tracker

>GAPS on *balloon*: power limited, payload limited, etc.

GAPS custom ASIC (SLIDER-32)

- 180-nm CMOS technology
- $\circ~$ 32 channels and 11-bit ADC
- $\circ~$ 1 keV resolution in 10-100 keV
- $\,\circ\,$ <10% resolution up to 100 MeV
- → Power consumption: <10 mW/chan

- + Wire bounds connect detector strips to ASIC FEB.
 - Reduced mass budget
 - Lower power budget
 - Improved track reconstruction

Scotti et al., Proc. (ICRC2019), Manghisoni et al., IEEE 62 (2015) Manghisoni et al., IEEE 68 (2021), Manghisoni et al., IEEE 71 (2023)

GAPS Payload

Combined data taking with TOF and Tracker on ground:

- \circ More than 10 million muon tracks have been collected.
- o Detailed data analysis ongoing.

ARTICLE

ARTICLI

ARTICL

Countdown to **Blast-off** !!

23

Summary & Outlook

□GAPS: first experiment optimized specifically for low-energy $(\leq 0.25 \text{ GeV}/n)$ cosmic anti-p, anti-d, and anti-He.

GAPS aims to deliver:

 first-time detection of cosmic antideuterons with an unprecedented sensitivity ~2 orders of magnitude below the current best limits, "smoking-gun" DM signature.

precision antiproton measurement in an unexplored
 energy range

o open sensitivity to low-energy cosmic anti-He

□GAPS has completed the on-ground commissioning, towards the *first science flight from the Antarctica this year!*

Stay tuned!!!

Thank You!

Backup Slides

CPS-HEP @Qingdao, Aug. 13-18, 2024

GAPS Instrument-**TOF**

□ Time of Flight plastic scintillator:

• Covers ~15 m^2 inner cube and ~25 m^2 outer layer (top umbrella + side cortina).

Bird et al., Proc. ICRC (2019), Quinn et al., Proc. ICRC (2019) Quinn et al., Proc. ICRC (2021), Feldman et al., Proc. ICRC (2023)

GAPS Instrument-TOF

□ Time of Flight plastic scintillator:

- Covers ~15 m^2 inner cube and ~25 m^2 outer layer (top umbrella + side cortina).
- Measure velocity of incoming particles + fast trigger to Si(Li) tracker.
 - Time resolution → achieved ≤400 ps (meets the requirement <0.5 ns)
 - TOF Trigger & Veto → accept ~80% of anti-nuclei and suppress overall event rate <500 Hz!

Bird et al., Proc. ICRC (2019), Quinn et al., Proc. ICRC (2019) Quinn et al., Proc. ICRC (2021), Feldman et al., Proc. ICRC (2023)

GAPS Instrument-Thermal

□ Oscillating Heating Pipe (OHP): low power,

low mass, and semi-passive

- Dual-phase fluid in small pipes (ID ~1 mm), heating of Si(Li) detectors (~300 W) transferred by OHP to a radiator then to the space
- Developed at JAXA/ISAS \rightarrow firstly used for balloon

Okazaki et al., J. Astr.. Instr. 3 (2014), Fuke et al., J. Astron. Instrum. (2017) Okazaki et al., Appl. Therm. Eng. (2018), Fuke et al., NIM A (2023)

Scaled radiator model was validated on engineering flight (NASA SIFT)

GAPS Instrument-Thermal

□ Oscillating Heating Pipe (OHP): low power,

- low mass, and semi-passive
 - Dual-phase fluid in small pipes (ID ~1 mm), heating of Si(Li) detectors (~300 W) transferred by OHP to a radiator then to the space
 - Developed at JAXA/ISAS → firstly used for balloon

Okazaki et al., J. Astr.. Instr. 3 (2014), Fuke et al., J. Astron. Instrum. (2017) Okazaki et al., Appl. Therm. Eng. (2018), Fuke et al., NIM A (2023)

GAPS radiator for flight mounted on the gondola

Low-energy \overline{d} : generic signature of dark matter

- The GAPS antideuteron search is sensitive to a wide range of generic dark matter models, e.g.:
 - Generic 70-GeV WIMP annihilation model that explains AMS-02 antiproton excess and GC γ-ray excess
 - $_{\odot}\,$ Dark matter gravitino decay
 - o Extra dimensions
 - Dark photons
 - Heavy DM models with Sommerfeld enhancement

Any antideuteron signal needs to be compatible with antiproton constraints!

Low-energy \overline{He} : new probe of hinted anomalies

- ➢ GAPS extends to lower energies (0.11-0.3 GeV/n), complementary to AMS-02.
 - Capable of confirming signal, orthogonal detection technique, uniquely low bkg.

 \Box CR, p, e^{\pm} rejection: select slow particles with TOF, AND simultaneous detection of annihilation products (TOF + Tracker)

- > Potential "background" for $\overline{d}/\overline{H_e}$ search = antiparticle (\overline{p}) mis-identification:
 - $\bar{p} / \bar{d} / \overline{H_e}$ follow same way to form exotic atom and produce the similar annihilation products

GAPS background discrimination power ($\overline{p} / \overline{d}$ identification)

- Stopping range, dE/dx
- Charge particle (pion/proton) multiplicity
- Characteristic atomic X-ray lines

Discrimination Power $(\bar{p} / \bar{d} \text{ identification})$

Stopping range, dE/dx

Charge particle (pion/proton) multiplicity
Characteristic atomic x-ray lines

- TOF measures angle & velocity of primary particles precisely.
- With the same velocity (beta), antideuterons go deeper and deposit more energies in tracker layers (larger *dE/dx*) *due to a heavier mass.*

 Use antiproton data (Crystal Barrel) to tune/validate annihilation physics in Geant4 (work with Geant4 developers).

Discrimination Power $(\bar{p} / \bar{d} \text{ identification})$

Stopping range, dE/dx
Charge particle (pion/proton) multiplicity

o Characteristic atomic x-ray lines

X-ray energies from exotic atom depend on the mass of the captured antiparticle.

• Stopping range, dE/dx

Discrimination Power $(\bar{p} / \bar{d} \text{ identification})$

• Charge particle (pion/proton) multiplicity

o Characteristic atomic x-ray lines

• Validated with the measurement with \bar{p} beam at KEK in 2004

o Measured X-ray data were well consistent with the calculations.

