

江门中微子实验天文学中 微子研究

张依兵 (代表江门中微子实验合作组)

中国科学院高能物理研究所

2024.8.15

第十四届全国粒子物理学术会议,青岛

江门中微子实验

- **Jiangmen Underground Neutrino Observatory (JUNO)**
- 该实验在2013年获得批准,世界范围内有74所合 作单位,700多位合作组成员
- 地下700米,多功能探测器:3%能量分辨率,2万 吨液闪

首要物理目标:测量中微子质量顺序(>3 σ)

大气中微子, 地球中微子, 核子衰变等

其他物理研究:太阳中微子,超新星中微子,

《JUNO的探测技术研发与探测器建设进展》

计划2024年底完成探测器建设, 2025年取数

IBD: inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$ CCSN: core-collapse supernova

2

江门中微子实验探测器

Acrylic Sphere(亚克力球): 内径: 35.4 m 厚度: 12 cm Stainless Steel (SS) Structure (不锈钢结构): 内径: 40.1 m, 外径: 41.1 m 17612只20英寸光电倍增管 (PMT), 25600只3 英寸 PMT Water pool(水池):

内径: 43.5 m, 高度: 44 m 2400只20英寸 PMT

超新星中微子

 10 kpc处的超新星爆发, JUNO中约~5000 IBD, ~2000 pES, ~300 eES 可以被观测.

超新星预警系统

多信使信号

- 地球上可观测包括 pre-SN 中微子(爆 发前期超新星释放的中微子), SN 中 微子(爆发过程中释放的中微子), 引力 波以及电磁波等
- JUNO实验可以探测pre-SN和SN中微 子
 - Pre-SN
 - ~MeV的中微子
 - 几小时或几天可以给出预警
 - SN中微子探测
 - 几十MeV的中微子,持续10 秒左右

超新星预警系统

٠

超新星探测系统

- 快速预警系统:提供快速预警,运行在FPGA上
- 在线预警系统:运行在DAQ,利用事例重建信息提供预警
- 多信使触发系统: (降低能量阈值至20 keV) •
- 以在线预警系统为例 (JCAP 01 (2024) 057)

- 预警距离 (预警效率达到 50%处): 230~350 kpc
- 预警时间: 15~30 ms

预警距离可以达到: 0.6~1.6 kpc 预警时间: 3~120 hours before SN • explosion

超新星预警—方向重建

- 指导天文学望远镜较早地准备观测CCSN爆发
- 15 M_① Patton 模型:利用爆发前身中微子对于Betelgeuse-like (0.2 kpc) 模型,在正质量排序(反质量排序)情形, 方向重建能力大约在 56[°] (81[°])
- 13 M_② Nakazato模型:对于一个典型的10 kpc的CCSN,在正质量排序 (反质量排序)情形,方向重建能力达到 26[°](23[°])

超新星能谱观测

超新星遗迹中微子

信号以及本底的事例率和能谱

首要探测道:反贝塔衰变 (IBD)

观测能量区间为 [12, 30] MeV, 主要本底:

- 快中子本底
- 大气中微子中性流本底

10年总事例数		w/o 排除本底	w/ 排除本底	
FV1	dsnb	20.8	15.6	
	bkg	459.4	3.5	
	S/B	0.045	4.46	
FV2	dsnb	5.0	3.6	
	bkg	136.5	1.9	
	S/B	0.037	2.0	

两个fiducial volumes: FV1(内层)和 FV2(外层,全反射区)来排除大部分的快中子事例,使用不同的本底排除策略

排除本底方面上的<mark>亮点</mark>:

- Muon veto
- 粒子脉冲鉴别(PSD)

超新星遗迹中微子

JCAP 10 (2022) 033

灵敏度

基于DSNB代表模型 (黑实线(左图)): 3σ (3 年数据) 和6σ (10 年数据)

f_{BH}: 黑洞比例

太阳中微子

・ 探测器优势

- 最大的液闪靶体积 (20 kt)
- 低能量阈值 (0.2 MeV)、低天然放射 性本底(U/Th~10⁻¹⁷ g/g)、高能量分 辨率 (3%)
- **物理目标:**开展对太阳中微子流强和振荡 参数的测量
 - ⁸B中微子: 在国际上首次探测到太阳 中微子和¹³C的NC和CC反应道。 独 立测量⁸B太阳中微子流强

 $, \theta_{12}, \Delta m_{21}^2$ 等振荡参数

• ⁷Be, pep, CNO中微子: 检验太阳金 属丰度模型

太阳中微子 (⁷Be, pep, CNO中微子)

观测道: ES $\nu_x + e^- \rightarrow \nu_x + e^-$ 分析能区: [0.45, 1.6] MeV

	Solar ν	$^{7}\mathrm{Be}$	pep	CNO
	$\Phi[10^8{\rm cm}^{-2}{\rm s}^{-1}]$	$49.3(1\pm0.06)$	$1.44(1\pm 0.009)$	$4.88(1 \pm 0.11)$
HZ- SSM	$R \; [{ m cpd}/{ m kton}]$	489 ± 29	28.0 ± 0.4	50.3 ± 8.0
	$R^{ m ROI}$ [cpd/kton]	142.5 ± 8.3	17.1 ± 0.2	16.6 ± 2.6
	$\Phi[10^8{\rm cm}^{-2}{\rm s}^{-1}]$	$45.0(1\pm0.06)$	$1.46(1\pm 0.009)$	$3.51(1 \pm 0.10)$
LZ- SSM	$R \; [{ m cpd}/{ m kton}]$	447 ± 26	28.4 ± 0.4	36.0 ± 5.3
	$R^{ m ROI}$ [cpd/kton]	130.0 ± 7.5	17.3 ± 0.2	11.9 ± 1.8
Borexino results	$\Phi[10^8{\rm cm}^{-2}{\rm s}^{-1}]$	$49.9 \pm 1.1^{+0.6}_{-0.8}$	$\begin{array}{c} 1.27 \pm 0.19 \substack{+0.08 \\ -0.12} (\mathrm{LZ}) \\ 1.39 \pm 0.19 \substack{+0.08 \\ -0.13} (\mathrm{HZ}) \end{array}$	$6.6 \ ^{+2.0}_{-0.9}$

12

太阳中微子 (⁸B中微子)

利用ES, NC, CC三个反应道

- ・ 提供最大的¹³C ES+NC+CC 样本, 60,000 ES(弾 性散射), 600 NC(中性流)/CC(带电流)
- ・⁸B 束流无模型依赖误差可以在10年内达到 5%

No.		Channels	Threshold [MeV]	Signal	Event numbers (10
1		$\nu_e + {}^{12}\text{C} \to e^- + {}^{12}\text{N}(1^+; \text{gnd})$ [35]	16.827	$e^{-}+{}^{12}N \text{ decay } (\beta^{+}, Q=17.338 \text{ MeV})$	0.43
1	CC	$\nu_e + {}^{13}\text{C} \to e^- + {}^{13}\text{N}\left(\frac{1}{2}; \text{gnd}\right)$ [36]	2.2	$e^{-}+^{13}$ N decay (β^{+} , Q=2.22 MeV)	3929
2		$\nu_e + {}^{13}\text{C} \to e^- + {}^{13}\text{N}\left(\frac{3}{2}^-; 3.5\text{MeV}\right)$ [36]	5.7	e^-+p	2464
4		$\nu_x + {}^{12}\text{C} \to \nu_x + {}^{12}\text{C}(1^+; 15.11 \text{ MeV}) [35]$	15.1	γ	4.8
3		$\nu_x + {}^{13}\text{C} \to \nu_x + n + {}^{12}\text{C}(2^+; 4.44 \text{MeV}) $ [37]	6.864	$\gamma + n$ capture	65
4		$\nu_x + {}^{13}\text{C} \to \nu_x + {}^{13}\text{C}(\frac{1}{2}^+; 3.089 \text{MeV})$ [36]	3.089	γ	14 ES
5	NC	$\nu_x + {}^{13}\text{C} \to \nu_x + {}^{13}\text{C}(\frac{3}{2}; 3.685 \text{ MeV})$ [36]	3.685	γ	3032
6		$\nu_x + {}^{13}\text{C} \to \nu_x + {}^{13}\text{C}(\frac{5}{2}^+; 3.854\text{MeV})$ [36]	3.854	γ	2.8
7	ES	$\nu_x + e \to \nu_x + e$	0	e ⁻	$3.0 imes10^5$.

- 可模型无关的测量⁸B太阳中微子流强,两个振荡参数sin²θ₁₂ (8%)和Δm²₂₁(20%)
- 如果联合SNO-NC结果,可获得世界上最高的⁸B中 微子流强精度3%

Astrophys. J 965, 122 (2024)

地球中微子

- **反电子中微子:** 来自²³²Th和²³⁸U的衰变链,提供探测地球结构和地球物质组成的方法
- 高统计量:将在1年内测量的地球中微子事件数量比 Borexino和KamLAND在超过10年内测量的数量 多约400个
- ・ 有测量U/Th比值的潜力

	Rate [cpd]	Rate uncert.	Shape uncert.
Geo-neutrinos	1.2	-	5%
Reactor neutrinos	47.1	-	Daya Bay/ TAO
Accidental	0.8	1%	-
⁹ Li/ ⁸ He	0.8	20%	10%
¹³ C(α, n) ¹⁶ O	0.05	50%	50%
Fast neutron	0.1	100%	20%
World reactor neutrinos	1	2%	5%
Atmospheric neutrinos	0.16	50%	50%

地球中微子

对总地球中微子通量的灵敏度

U/Th固定 (3.9)

Expected geoneutrino precision* (assuming Th/U mass ratio fixed to 3.9)		
1 year	~22%	
6 years	~10%	
10 years	~8%	

对比其他实验:

Phys. Rev. D 101, 012009 Borexino 17% with 8.9 years

KamLAND 15% with 14.3 years

Phys. Rev. C, 80, 015807

JUNO实验将会提供最精确的测量结果

U/Th自由

- JUNO探测器预计于2024年完成建设并开始填充探测器, 2025年采集数据
- 高性能的探测器:大液闪靶体积(2万吨),低能量阈值(0.2
 MeV)、低天然放射性本底、高能量分辨率(3%),将为数据采集和物理研究做好充分准备。
- JUNO实验在探测太阳中微子,超新星中微子,地球中微子, 核子衰变等方面展现出优秀的物理潜能,具有很强的国际竞 争力。