Observation of the MGRO J1908+06 region

Sha Wu、Shicong Hu、 Khangulyan Dmitriy and Ruoyu Liu on behalf of the LHAASO Collaboration

2024.8.15@第十四届全国粒子物理学术会议

randomized by Magnetic Fields in the Universe.

UHE Gamma-ray Sources

Cao et al., DOI: 10.48550/arXiv.2305.17030.

- E>100 TeV, **43** sources were detected with significance above 4σ.
 - MGRO J1908+06 is a strong contender for a Pevatron.

Introduction of the MGRO J1908+06 region

• SNR G40.5-0.5:

diameter,40-65pc; distance,5.5-8.5kpc; age (20–40)kyr.

• PSR J1907+0631

 5×10^{35} erg/s, 11 kyr, 7.9kpc

• PSR J1907+0602 :

 $2.8 \times 10^{36} erg/s$, 19.5kyr, 3.2kpc

The TeV emission has been attributed to this pulsar, but other objects could also contribute to the emission.

X-ray observations

•••	Paper	Data	Exposure times [ks]	Radius of ROI	Energy range [keV]	95% UL
	Dirk Pandel, ICRC 2015	XMM-Newton EPIC MOSs and PN	56.4	45' (VERITAS 2014, 286.84, 6.22)	1-10	7.1e-12 erg/cm2/s $L_{\rm X} \leq 8.7e33$ erg/s
	S. Crestan, et al., MNRAS, May 2021.	XMM-Newton EPIC MOSs and PN	~40	5' (PSR J1907+0602)	1-10	1.5e-12 erg/cm2/s
	Jian Li, et al., APJL, June 2021.	XMM-Newton EPIC MOSs and PN	109	20' (H.E.S.S. 2009, 286.97, 6.26)	0.2-10	1.2e-10 erg/cm2/s

SNR G40.5-0.5 40:00.0 Coverage 35:00.0 30:00.0 25:00.0 TYC 475-279-1 Declination 20:00.0 15:00.0 10:00.0 19 Aql 05:00.0 PSR J1907+0602 6:00:00.0 30.0 09:00.0 30.0 19:08:00.0 30.0 07:00.0

Right ascension

Previous TeV Observation

	VERITAS_2014	HESS_2009	ARGO_2012	HAWC_2022	LHAASO_2021
Erange	100 GeV -30 TeV	300 GeV-30 TeV	1-20TeV	470 GeV-213 TeV	10-500 TeV
Position(°)	$286.84 \pm 0.02 \\ 6.22 \pm 0.02$	$286.98 \pm 0.04 \\ 6.27 \pm 0.04$	287.0 ± 0.2 6.4 ± 0.2	287.05, 6.39 Fix 3HAWC	287.05,6.35
Extension(°)	0.44 ± 0.02	0.34+0.04 -0.03	0.49 ± 0.22	$1.78 \pm 0.08 ~(\theta_d)$	0.58 ± 0.04
Alp	$2.20 \pm 0.10 \pm 0.2$	$2.10 \pm 0.07 \pm 0.2$	2.54±0.36	$\begin{array}{l} 2.545 \pm 0.026(\alpha) \\ 0.134 \pm 0.018(\beta) \end{array}$	2.27(α) 0.46(β)

- The position and extension of the gammaray emission is consistent within uncertainties.
- The spectrum shows a gradual steepening as the energy increases.

Results in ICRC 2023

• Closer to the pulsar location & a softening of the spectral index

Energy range	Right ascension	Declination	Extension	Γ φ ₀	
(TeV)	(deg)	(deg)	1σ (deg)		1/(cm ² sTeV)
(0.8 - 3.05)	286.98 ± 0.03	6.44 ± 0.03	0.47 ± 0.02	2.19 ± 0.12	$(9.61 \pm 0.74) \cdot 10^{-12}$
(3.05 - 12.3)	286.95 ± 0.04	6.28 ± 0.04	0.48 ± 0.03	2.63 ± 0.2	$(1.58 \pm 0.51) \cdot 10^{-11}$

LHAASO Results

- Selection: Same as Crab (CPC)
- Background estimation: direct integration method
- Method: 3DLikelihood analysis
- **GDE:** Dust model. free the flux.

- Distance of Src1 and Src2: 0.1 deg
- The extension of Src2 in KM2A is larger than that of WCDA by 3σ .

Test the Templet

- It appears that Src1 and Src2 together contribute to the emission of MGRO J1908+06
- The gamma-ray morpholoy may be non-Gaussian. $f(\theta)$

$$f(\theta) \propto \frac{1}{\theta_d(\theta + 0.085\theta_d)} \exp[-1.54(\theta/\theta_d)^{1.52}]$$

Energy	Model	R.A. [deg.]	Dec. [deg.]	θ _d [deg.]	ΔBIC(vs Two Gaus)
1-20 TeV	Diffuse	287.072 0.011	6.279 0.010	1.547 0.047	-41.7
>25 TeV	Diffuse	287.058 0.011	6.234 0.012	1.150 0.039	4.1

SED

Total of the region:

- **From 1 TeV to 10 TeV:** slightly higher than VERITAS but consistent within 1σ.
- Above 10 TeV: in good agreement with the data reported by LHAASO in 2021 and HAWC.

$$\frac{dN}{dE} = E^2 \times N_0 \left(\frac{E}{20 \text{ TeV}}\right)^{-\alpha - \beta \times lg(\frac{E}{20 \text{ TeV}})}$$

Leptonic Model

CMB: 0.261 ev cm⁻³ FIR dust emission: 0.5 ev cm⁻³ 70k NIR stellar emission: 1.0 ev cm⁻³ 5000k

(Same with the model of Crab)

• Best fit parameters of the moc

zest ne parameters of the			
Parameter	Value		
А	$5.1 \pm 1.5 \times 10^{34}$		
E _{break}	18.6±1.8		
α_1	1.95±0.12		
α ₂	3.05±0.06		
E _{cutoff}	358±74TeV		
В	3uG		
• We(>100 GeV) = 5. \times 10 ⁴⁷ erg			

Hadronic Model

• A power-law spectrum with an exponential cutoff:

a= 2.2; Ec~700TeV; W_p= 4.4×10^{49} erg

Conclusion

- The results from LHAASO are consistent with other observations.
- Both leptonic and hadronic models are capable of explaining the observed gamma-ray emission.
- A more detailed analysis investigating the energy-dependent morphology is in progress.

Thank you!