2024 全国粒子物理学术会议 2024. 7. 14

高圈多外线费曼积分的解析计算

张扬 中国科学技术大学

Henn, Peraro, Xu, YZ, *JHEP* 03 (2022) 056

also the package ...

Based on

Henn, Matijasic, Miczajka, Peraro, Xu, YZ, JHEP 08(2024) 027 Liu, Matijasic, Miczajka, Peraro, Xu, Xu, YZ, to appear

"NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals" Wu, Boehm, Ma, Xu, YZ, Comput. Phys. Commun. 295 (2024), 108999

Why Feynman integrals? Why analytic? Summary and Outlook

Outline

Case 1: 2loop 6point Feynman integrals Case 2: 3loop 5point Feynman integrals

Precision physics $\sigma = \sigma^{LO} + \sigma^{NLO} + \sigma^{NNLO}$

Why Feynman integrals?

Julius Wess Jonathan Bagger

Supersymmetry and Supergravity

SECOND EDITION REVISED AND EXPANDED

Formal theory

PRINCETON SERIES IN PHYSICS

Feynman integrals

Gravitational wave template computations

Why analytic Feynman integrals?

- Auxiliary Mass Flow and Numeric Monte Carlo methods slow or not available yet for some multi-loop multi-leg Feynman integrals for examples: 2loop 6point and 3loop 5point Feynman integrals
- Theoretical aspects of quantum field theory for examples: 2loop Yang-Mills theory collinear factorization violation
 - Henn, Ma, Xu, Yan, YZ, Zhu, arXiv 2406.14604
- Quantum field theory computation of gravitational wave

for the advance of AMFlow, refer to Yanqing Ma's plenary talk

Integration-by-parts (IBP) reduction

Uniformly transcendental (UT) basis determination Canonical differential equation

Alphabet searching

Solving differential equation

Our Strategy

Guan, Liu, Ma, Wu, 2024

Finite field techniques, Blade, NeatIBP

$$\frac{\partial}{\partial x_i} I(x,\epsilon) = \epsilon A_i(x) I(x,\epsilon)$$

$$A_i = \frac{\partial}{\partial x_i} \tilde{A}, \quad \tilde{A} = \sum_k \tilde{a}_k \log(W_k)$$

 $\int d\log(W_{i_1}) \circ \ldots \circ d\log(W_{i_k})$

 \rightarrow polylogarithm functions or one-fold integration

2100p 6point Feynman integrals

The status of art for analytic computations Scale frontier Gehrmann, Henn, Lo Presti 2015 5 scales Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia 2019 Papadopoulos, Tommasini, Wever 2019 6 scales Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020 Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 2023 7 scales Cordero, Figueiredo, Kraus, Page and Reina 2023 for leading-Color pp→ttH amplitudes with a light-quark loop 8 scales! Henn, Matijasic, Miczajka, Peraro, Xu, YZ, 2024 for NNLO 4 jets production, 2 jets+ 2 photons

2100p 5point massless

2loop 5point one-mass

2loop 5point two-mass

2100p 6point massless

 $s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{16}, s_{123}, s_{345}$

What we achieved

double box

pentagon triangle

canonical differential equation also solved

hexagon bubble

J. Henn, A. Matijasic, J. Miczajka, T. Peraro, Y. Xu, YZ, JHEP08(2024)027

to appear as the next paper

Uniformal transcendental (UT) basis determination

Chiral numerator (Arkani-Hamed, Bourjaily, Cachazo, Trnka 2011) / Gram determinant correspondence

J. Henn, A. Matijasic, J. Miczajka, T. Peraro, Y. Xu, YZ, JHEP08(2024)027

$$I_{\mathrm{db},i} = \int \frac{d^{4-2\epsilon} l_1}{i\pi^{2-\epsilon}} \frac{d^{4-2\epsilon} l_2}{i\pi^{2-\epsilon}} \frac{N_i}{D_1 D_2 D_3 D_{10} D_{11} D_{12} D_{13}}, \quad i = 1,.$$

$$N_{1} = -s_{12}s_{45}s_{156},$$

$$N_{2} = -s_{12}s_{45}(l_{1} + p_{5} + p_{6})^{2},$$

$$N_{3} = \frac{s_{45}}{\epsilon_{5126}}G\left(\begin{array}{ccc} l_{1} & p_{1} & p_{2} & p_{5} + p_{6} \\ p_{1} & p_{2} & p_{5} & p_{6} \end{array}\right),$$

$$N_{4} = \frac{s_{12}}{\epsilon_{1543}}G\left(\begin{array}{ccc} l_{2} - p_{6} & p_{5} & p_{4} & p_{1} + p_{6} \\ p_{1} & p_{5} & p_{4} & p_{3} \end{array}\right),$$

$$N_{5} = -\frac{1}{4}\frac{\epsilon_{1245}}{G(1,2,5,6)}G\left(\begin{array}{ccc} l_{1} & p_{1} & p_{2} & p_{5} & p_{6} \\ l_{2} & p_{1} & p_{2} & p_{5} & p_{6} \end{array}\right),$$

$$N_{6} = \frac{1}{8}G\left(\begin{array}{ccc} l_{1} & p_{1} & p_{2} \\ l_{2} & -p_{6} & p_{4} & p_{5} \end{array}\right) + \frac{D_{2}D_{11}(s_{123} + s_{126})}{8},$$

$$N_{7} = -\frac{1}{2\epsilon}\frac{\Delta_{6}}{G(1,2,4,5)D_{13}}G\left(\begin{array}{ccc} l_{1} & p_{1} & p_{2} & p_{4} & p_{5} \\ l_{2} & p_{1} & p_{2} & p_{4} & p_{5} \end{array}\right).$$

$$\Delta_{6} = \langle 12\rangle [23]\langle 34\rangle [45]\langle 56\rangle [61] - \langle 23\rangle [34]\langle 45\rangle [56]\langle 61\rangle [12].$$
Key s

step _____

Complete canonical differential equation for 216p double box

Differential equation matrix red blocks are proportional to ε

Brute-force IBP reduction doesn't work use alphabet to fit the differential equation

$$A_i = \frac{\partial}{\partial x_i} \tilde{A}, \quad \tilde{A} = \sum_k \tilde{a}_k \log(W_k)$$

Odd letter

$$\frac{P(s) - \sqrt{Q(s)}}{P(s) + \sqrt{Q(s)}}$$

$$P^2 - Q = c \, \Big]$$

A new algorithm to search for odd letters

Even letter

An observation (and conjecture) from Heller, von Manteuffel, Schabinger 2020

Algorithm to solve for C, e_i Matijasic, J. Miczajka, to appear soon package "Effortless"

Even letter, Odd letter and the more complicated ...

F(s)114 Even letter

Conjecture: a Feynman integrals' even letters are all from Landau singularity?

- a polynomial in Mandelstam variables and masses

 - $\log(W) \mapsto -\log(W)$ under the sign change of the square root Källin function from massive triangle leading diagrams singularity
 - hexagon

Numeric boundary values It is fine to use the package AMFlow to get ~100 digits as the boundary value Analytic boundary values $X_0:$

Solve the canonical DE on a curve starting with X_0 and require the finite solution Some known integrals' boundary values

Liu, Wang, Ma, 2018 Liu, Ma 2022

It is still possible to *fully analytic* boundary values due to the kinematic symmetry

UT integrals are not divergent at this point (spurious poles).

analytic boundary value

Boundary Values

Analytic boundary values

$$\begin{aligned} \epsilon^{4}I_{db,1}(X_{0}) &= 1 + \frac{\pi^{2}}{6}\epsilon^{2} + \frac{38}{3}\zeta_{3}\epsilon^{3} + \left(\frac{49\pi^{4}}{216} + \frac{32}{3}\,\operatorname{Im}\left[\operatorname{Li}_{2}(\rho)\right]^{2}\right)\epsilon^{4}, \\ \epsilon^{4}I_{db,2}(X_{0}) &= 1 + \frac{\pi^{2}}{6}\epsilon^{2} + \frac{34}{3}\zeta_{3}\epsilon^{3} + \left(\frac{71\pi^{4}}{360} + 20\,\operatorname{Im}\left[\operatorname{Li}_{2}(\rho)\right]^{2}\right)\epsilon^{4}, \\ I_{db,3}(X_{0}) &= I_{db,4}(X_{0}) = I_{db,5}(X_{0}) = 0, \\ \epsilon^{4}I_{db,6}(X_{0}) &= -\left(\frac{\pi^{4}}{540} + \frac{4}{3}\,\operatorname{Im}\left[\operatorname{Li}_{2}(\rho)\right]^{2}\right)\epsilon^{4}, \end{aligned}$$
 from the differential equation spurious pole asymptotic anal $\epsilon^{4}I_{db,7}(X_{0}) = 0. \end{aligned}$

Boundary values at the initial point, are combination of poly-logarithm of roots of unity

$$\rho = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$I = \frac{1}{\epsilon^4} \left(I^{(0)} + \epsilon I^{(1)} + \epsilon^2 I^{(2)} + \epsilon^3 I^{(3)} + \epsilon^4 I^{(4)} + \dots \right)$$

weight-1, weight-2

 $I^{(2)}$ $I_{db,1}$ –

Solution of canonical DE

 $dI = \epsilon(d\tilde{A})I$

$$I^{(n)} = I_{X_0}^{(n)} + \int_{\gamma} (d\tilde{A}) I^{(n-1)}$$

All in logarithm and classical poly-logarithm

$$\begin{split} &-\log\left(-v_{1}\right)\log\left(-v_{2}\right)-\log\left(-v_{1}\right)\log\left(-v_{3}\right)+\log\left(-v_{1}\right)\log\left(-v_{4}\right)-\log\left(-v_{1}\right)\log\left(-v_{5}\right)-\log\left(-v_{1}\right)\log\left(-v_{6}\right)+4\log\left(-v_{1}\right)\log\left(-v_{8}\right)+\frac{1}{2}\log^{2}\left(-v_{1}\right)+\log\left(-v_{2}\right)\log\left(-v_{3}\right)-\log\left(-v_{3}\right)-\log\left(-v_{2}\right)\log\left(-v_{2}\right)\log\left(-v_{2}\right)\log\left(-v_{2}\right)\log\left(-v_{2}\right)\log\left(-v_{2}\right)\log\left(-v_{2}\right)\log\left(-v_{2}\right)\log\left(-v_{2}\right)\log\left(-v_{3}\right)\log\left(-v_{4}\right)+\log\left(-v_{3}\right)\log\left(-v_{5}\right)-2\operatorname{Li}_{2}\left(1-\frac{v_{3}}{v_{8}}\right)-\log\left(-v_{3}\right)\log\left(-v_{3}\right)\log\left(-v_{3}\right)+\log\left(-v_{3}\right)\log\left(-v_{9}\right)-\log\left(-v_{2}\right)\log\left(-v_{5}\right)-\log\left(-v_{4}\right)\log\left(-v_{5}\right)+\log\left(-v_{5}\right)\log\left(-v_{5}\right)+4\log\left(-v_{4}\right)\log\left(-v_{8}\right)+\frac{1}{2}\log^{2}\left(-v_{4}\right)+\log\left(-v_{5}\right)\log\left(-v_{6}\right)+\log\left(-v_{5}\right)\log\left(-v_{7}\right)-2\operatorname{Li}_{2}\left(1-\frac{v_{5}}{v_{8}}\right)-\log\left(-v_{5}\right)\log\left(-v_{8}\right)-\log\left(-v_{8}\right)+\log\left(-v_{6}\right)\log\left(-v_{9}\right)-\log^{2}\left(-v_{6}\right)-\log\left(-v_{5}\right)\log\left(-v_{8}\right)+\log\left(-v_{6}\right)\log\left(-v_{9}\right)+3\log^{2}\left(-v_{8}\right)-\frac{1}{2}\log^{2}\left(-v_{9}\right)+\frac{\pi^{2}}{6}\end{split}$$

Solution of canonical DE

$$I = \frac{1}{\epsilon^4} \left(I^{(0)} + \epsilon I^{(1)} + \epsilon^2 I^{(2)} + \epsilon^3 I^{(3)} + \epsilon^4 I^{(4)} + \dots \right)$$

weight-3, weight-4

$$\vec{I}^{(4)} = \vec{I}^{(4)}(\vec{x}_0) + \int_0^1 dt \frac{d\tilde{A}}{dt} \vec{I}^{(3)}(\vec{x}_0) + \int_0^1 dt_1 \int_0^{t_1} dt_2 \frac{d\tilde{A}}{dt_1} \frac{d\tilde{A}}{dt_2} \vec{f}^{(2)}(t_2)$$

$$= \vec{I}^{(4)}(\vec{x}_0) + \int_0^1 dt \left(\frac{d\tilde{A}}{dt} \vec{I}^{(3)}(\vec{x}_0) + \left(\tilde{A}(1) - \tilde{A}(t) \right) \frac{d\tilde{A}}{dt} \vec{f}^{(2)}(t) \right).$$
 one-fold integra

It takes minutes on a laptop to get 20 digits from our analytic solution

 $dI = \epsilon(d\tilde{A})I$

$$I^{(n)} = I_{X_0}^{(n)} + \int_{\gamma} (d\tilde{A}) I^{(n-1)}$$

3100p 5point Feynman integrals

from the request of John Ellis ...

What we achieved

 $5 \text{ scales} \qquad s_{12}, s_{23}, s_{34}, s_{45}, s_{15}$ 316 Master Integrals

For this "rocket" subfamily, the analytic boundary values are obtained

Liu, Matijasic, Miczajka, Peraro, Xu, Xu, YZ, to appear

UT basis found!

Canonical differential derived from NeatIBP

Summary

With the latest progress on IBP reduction, UT basis determination, alphabet searching, we analytically computed 2loop 6point massless Feynman integrals.

This is the analytic computation of 2loop 8-scale Feynman integrals in DR.

and the work on <u>3loop 5point</u> will appear soon.

The analytic computation of many more multi-loop multi-leg multi-scale Feynman integrals would be possible.

Thank you

