

Fiducial and differential cross-section measurements of EW *Wγjj* production at 13TeV with the ATLAS detector

Jing Chen 2024.08.14

第十四届全国粒子物理学术会议

Introduction

- Vector boson scattering (VBS) measurements offers ٠ an important way to probe **electroweak symmetry** breaking.
- Sensitive to new physics: probe aTGC, aQGC ... ۲
- A good probe of the SM in the electroweak (EW) sector. Measure VBS via the corresponding EW productions.
 - For VBS processes, many channels have been measured and observed at LHC.

Higgs boson exchange:

Four boson vertex

Vector boson exchange

CMS $W\gamma jj$: ٠

 q_{i1}

 q_{i2}

Phys. Lett. B 811 (2020) 135988 Phys. Rev. D 108 (2023) 032017

 q_{f1}

 $W\gamma jj$ EW hasn't been observed at ATLAS.

VBF, VBS, and Triboson Cross Section Measurements Status: June 2024

Wγjj

- EW $W(\rightarrow l\nu)\gamma jj$:
 - **Observation** of EW $W\gamma jj$ production.
 - Differential cross-section measurements.
 - Limits on **aQGC**.
- Full Run2 datasets (140 fb^{-1}).

 $\bar{d} \xrightarrow{d W^+} \gamma$ $u \downarrow \bar{u}$ $g \qquad g$

- Perform measurement in **VBS-enhanced** phase space.
 - two energetic jets in the forward and backward region.
 - High m_{jj} , large Δy_{jj} .

Irreducible QCD background

Nature Physics 19 (2023) 237-253

Analysis strategy

Observation and fiducial cross section measurement

- A control region (CR) is defined to constrain the QCD background.
- Data driven method is used to estimate all non-prompt, fake, pileup backgrounds.
- Fit the Neural Network (NN) output to extract the signal strength (μ_{EW}).
- Fiducial cross-section is obtained by correcting the detector effects.
- Differential cross section measurement
 - Three CRs are defined to constrain QCD background.
 - Observables: m_{jj} , p_T^{jj} , p_T^l , $m_{l\gamma}$ (VBS observables, sensitive to aQGC), $\Delta \phi_{jj}$, $\Delta \phi_{l\gamma}$ (Charge conjugation and Parity observables, probe CP structure). $\Delta \phi_{l\gamma} = \phi_f \phi_b \leftarrow y_f > y_b$
 - EFT interpretation: The six unfold observable distributions are used to constrain dimension-8 (D-8) operators (sensitive to quartic gauge couplings).

 $\Delta \phi_{jj} = \phi_f^j - \phi_b^j \quad \longleftarrow \quad y_f^j > y_b^j$

Object & event selection

• object selection:

SR

 $N_{jets}^{gap} = 0$

 Δy_{jj} > 2, m_{jj} > 500 GeV

•

γ	lepton	Jets				
 At least 1 tight and isolated γ. p_T > 22 GeV. η < 2.37. 	 1 tight and isolated lepton. <i>p_T</i> > 30 GeV. η < 2.5. 2nd lepton veto. 	 At least 2 jets. $p_T > 50 \text{ GeV.}$ $\eta < 4.4.$ No b-jets (DL1r at 85%WP) 				
Event selection: - $m_T^W > 30$ GeV $ m_{l\gamma} - m_Z > 10$ GeV.						
- E_T^{miss} > 30 GeV.	 Standard object ov 	erlap removal.				
Observation & fiducial	cross- section					

CR

 $N_{jets}^{gap} > 0$

rapidity gap Δy .

 $\xi_{l\gamma} = \left| y_{l\gamma} - \frac{(y_{j1} + y_{j2})}{2} \right| (y_{j1} - y_{j2}) \right|$

5

Background estimation

• QCD background:

- Main background.
- Strong $W\gamma jj$.
- A control region is defined to constrain the QCD background.
- Simultaneously fit the NN output in signal region and control region.

• Prompt background:

- Top + $Z\gamma jj$.
- Estimate by using MC simulation.

• Non-prompt background:

- Jet fake photon: Largest non-prompt background (W+jet). A data-driven template fit is used.
- Jet fake lepton: Leptons arising from mis-reconstructed jets or in-flight decays of hadrons. Fake factor method is used.
- Electron fake photon: Arise from conversions and inefficient calorimeter to track matching (Z+jets & $t\bar{t}$). Tag & probe method is used.
- Pile-up photon: A photon originating from one *pp* interaction is selected alongside a Wjj event from another *pp* interaction from the same bunch crossing. Data driven method is used.

Background estimation

• Jet fake photon:

- Prompt γ isolation shape \leftarrow tight ID γ .
- Non-prompt γ isolation shape \leftarrow non-tight ID γ .
- Uncertainties: Stat. uncertainty in template & fit, choice of γ ID criteria, real γ subtraction , $E_T^{iso,\gamma}$ modelling.
- ABCD method is used to cross check.

• Jet fake lepton:

Fake efficiency: $\epsilon = \frac{N_e^{tight}}{N_e^{loose}}$ Fake factor: $F = \frac{\epsilon}{1 - \epsilon}$

Fake lepton background in SR:

$$N_{fakelep} = F_{e/\mu} \times (N_{e/\mu-data}^{anti-tight} - N_{e/\mu-prompt-lep}^{anti-tight})$$

- Dijet sample is used to get fake factors. A closure test has performed between dijet and gamjet samples.
- Fake factor with different p_T and η bins are measured.

- Uncertainties: Stat., jet composition uncertainty (γ + jet vs dijet), variation of selection cuts, prompt lepton subtraction with different QCD MC samples, variation of p_T , η binning of fake factor, background subtraction in dijet region.

Background estimation

- Electron fake photon:
 - Fake and real enriched regions defined by the presence of a probe electron or a probe photon.
 - Fake rate:

$$F_{e \to \gamma} = \frac{N_{\gamma} \epsilon_{\gamma}}{N_e^{reco} \epsilon_e}$$

 $\epsilon_{\gamma}, \epsilon_{e}$:the identification efficiency for γ and e.

Mreco -

- uncertainties: Stat., variation of fit range, integration range, p_T , η binning, different fit function in the fit.

• Pile-up photon

Pile-up fraction:

 $f_{PU} = \frac{N_{data}^{|\Delta z| > 50mm} - N_{MC}^{|\Delta z| > 50mm} * C}{N_{data} * 0.32}$

- Only converted photons with hits in the silicon tracker are used to ensure good resolution.
- Real photon purity is applied to fake fraction to avoid double counting pileup jets with fake photons.
- $f_{pu} = (1.7 \pm 1.6)\%$ in SR.

	•
C is a normalization	
C is a normalization	
factor derived by	=
comparing the MC]
to data.	
hits in the silicon	1

- Estimated under Z peak:

$$|M_Z - M_{e\gamma}| < 10 \text{ using}$$
a signal + background fit
$$|M_Z - M_{e\gamma}| < 10 \text{ using}$$

$$|M_Z -$$

$$F_{e \to \gamma} = \frac{N_{e\gamma}}{2N_{ee}} = \frac{S_{e\gamma} + B_{e\gamma}}{2(S_{ee} + B_{ee})} = \frac{S_{e\gamma} + S_{e\gamma}(\frac{1}{S/B})}{2(S_{ee} + S_{ee}(\frac{1}{S/B}))} = \frac{S_{e\gamma}}{2S_{ee}} \frac{(1 + \frac{1}{S/B})}{(1 + \frac{1}{S/B})} = \frac{S_{e\gamma}}{2S_{ee}}$$

	$\mathrm{SR}^{\mathrm{fid}}\left(N_{\mathrm{jets}}^{\mathrm{gap}}=0\right)$	$CR^{fid}\left(N_{jets}^{gap} > 0\right)$
EW $W\gamma jj$	520 ± 141	120 ± 49
Strong $W\gamma j j$	1550 ± 830	1970 ± 950
Non-prompt	692 ± 57	698 ± 58
Top quark processes	109 ± 18	183 ± 37
EW + strong $Z\gamma jj$	128 ± 34	163 ± 77
Total	3000 ± 830	3140 ± 960
Data	3341	3143

Observation & fiducial cross-section

Differential cross-section

- Signal extraction:
 - SR + 3CRs: defined by N_{jets}^{gap} & $\xi_{l\gamma}$.
 - Observables: m_{jj} , p_T^{jj} , p_T^l , $m_{l\gamma}$, $\Delta \phi_{jj}$, $\Delta \phi_{l\gamma}$.
 - Simultaneously fit in signal and control regions with bin by bin reweighting of signal and QCD components in each region.
 - The extracted yields are unfolded to produce differential cross sections.

- Differential cross-section:
- The predictions from both MadGraph5+Pythia8 and Sherpa are in agreement with the data within uncertainties.

EFT interpretation

• The effective Lagrangian:

• The differential cross-section can be decomposed into 3 terms: scales linearly w/ $f_i^{(8)}$

$$|\mathcal{M}|^2 = |\mathcal{M}_{\rm SM}|^2 + 2Re(\mathcal{M}_{\rm SM}^*\mathcal{M}_{\rm D-8}) + |\mathcal{M}_{\rm D-8}|^2$$

scales quadratically w/ $f_i^{(8)}$

• *Wγjj*:

- Sensitive to potential anomalous quartic couplings of $WW\gamma\gamma \otimes WW\gamma Z$.
- p_T^{jj} (most sensitive to tensor-type operators), p_T^l (most sensitive to mixed-scalar operators).
- Constraints on the f_{T3} and f_{T4} operators: **1**st such limits at the LHC.

Coefficien	ts [TeV ⁻⁴]	Observable	$M_{W\gamma}$ cut-off [Te	eV] Expected [Te	eV ⁻⁴] Observed [TeV ⁻⁴]
f_{T0}/Λ^4		p_{T}^{jj}	-	[-2.4,2.4	4] [-1.7,1.8]
f_{T1}/Λ^4	$p_{\mathrm{T}}^{\hat{j}j}$		-	[-1.5,1.6	5] [-1.1,1.2]
f_{T2}/Λ^4	Toncor	$p_{\mathrm{T}_{\perp}}^{jj}$	-	[-4.4,4.7	7] [-3.1,3.5]
f_{T3}/Λ^4	Tensor-	$p_{\mathrm{T}_{\perp}}^{jj}$	-	[-3.3,3.5	5] [-2.4,2.6]
f_{T4}/Λ^4	type	$p_{T_{i}}^{jj}$	-	[-3.0,3.0)] [-2.2,2.2]
f_{T5}/Λ^4	operato	ors $p_{\rm T}^{JJ}$	1.1	[-9.9,9.9	9] [-7.5,7.5]
f_{T6}/Λ^4	-	$p_{T_{i}}^{JJ}$	1.3	[-7.4,7.6	6] [-5.2,5.4]
f_{T7}/Λ^4		p_{T}^{JJ}	-	[-3.8,3.9	9] [-2.7,2.8]
f_{M0}/Λ^4		$p_{\mathcal{T}}^{\prime}$	-	[-38,37] [-38,37]
f_{M1}/Λ^4	N Alton al	$p_{\tilde{T}}^{\prime}$	-	[-57,58] [-41,42]
J_{M2}/Λ	iviixed-	$p_{\tilde{t}}$	0.8	[-110,11	0 [-88,82] 0 [-73,77]
f_{M3}/Λ^4	scalar	$\frac{p}{n}T$	1.1	[-118 11	1] [-89.83]
f_{M5}/Λ^4	operato	ors p_{T}^{PT}	1.3	[-57,80] [-32,77]
f_{M7}/Λ^4	operate	p_{T}^{l}	-	[-96,95] [-69,68]
Coeffici	ents [TeV]	-41 Obse	ervable Expe	ected [TeV $^{-4}$]	Observed $[TeV^{-4}]$
$\frac{f_{TO}}{\Lambda^4}$	[·]	p^{jj}	-24 241	[-1 8 1 8]
f_{T1}/Λ^4		E E	$\sum_{j=1}^{j}$	[-15 16]	[-1,1,1,2]
$f_{1/1}$		F .	T_{jj}		$\begin{bmatrix} 1.1, 1.2 \end{bmatrix}$
J_{T2}/Λ^{2}		ŀ	T_{ii}	-4.4, 4.7]	[-3.1, 5.3]
f_{T3}/Λ^4		ŀ	$r_{\rm T}^{\rm JJ}$	[-3.3, 3.5]	[-2.4, 2.6]
f_{T4}/Λ^4		ŀ	$p_{\rm T}^{JJ}$	-3.0, 3.0]	[-2.2, 2.2]
f_{T5}/Λ^4		ŀ	$p_{\mathrm{T}}^{\hat{j}j}$	[-1.7, 1.7]	[-1.2, 1.3]
f_{T6}/Λ^4		ŀ	$p_{\mathrm{T}}^{\hat{j}j}$	[-1.5, 1.5]	[-1.0, 1.1]
f_{T7}/Λ^4		ŀ	$p_{\mathrm{T}}^{\hat{j}j}$	[-3.8, 3.9]	[-2.7, 2.8]
f_{M0}/Λ^4			p_{T}^{l}	[-28, 28]	[-24, 24]
f_{M1}/Λ^4	Ļ		p_{T}^{l}	[-43, 44]	[-37, 38]
f_{M2}/Λ^4	Ļ	-	$p_{\rm T}^{t}$	[-10, 10]	[-8.6, 8.5]
f_{M3}/Λ^4	Ļ		p_{T}^{t}	[-16, 16]	[-13, 14]
f_{M4}/Λ^4	Ļ		p_{T}^{f}	[-18, 18]	[-15, 15]
f_{M5}/Λ^4	Ļ		p_{T}^{f}	[-17, 14]	[-14, 12]
f_{M7}/Λ^4	Ļ		p_{T}^{t}	[-78, 77]	[-66, 65]

- **1**st observation of EW $W\gamma jj$ at ATLAS.
 - $\mu_{EW} = 1.5 \pm 0.5$.
 - Observed (expected) significance: **9.0** σ (6.3 σ).
- Measurements of EW *Wγjj* fiducial and differential cross-section are reported.
 - $\sigma_{EW}^{fid} = 13.2 \pm 2.5 \, fb.$
 - **Differential cross-sections are measured** as functions of six kinematic observables.
 - The data are corrected for detector effects of inefficiency and resolution using an iterative Bayesian **unfolding** method.
 - These differential measurements are used to **search for anomalous quartic boson interactions** using D-8 operators in the context of an effective field theory.
 - The first LHC constraints on f_{T3} and f_{T4} are presented.
- Submit to EPJC, <u>arXiv:2403.02809</u>.

谢谢!

Object	Selection requirements		
Dressed muons	$p_{\rm T} > 30 {\rm GeV} {\rm and} \eta < 2.5$		
Dressed electrons	rons $ p_{\rm T} > 30$ GeV and $ \eta < 2.47$ (excluding $1.37 < \eta < 1.52$)		
Isolated photons	s $ E_T^{\gamma} > 22$ GeV and $ \eta < 2.37$ (excluding $1.37 < \eta < 1.52$) and $E_T^{\text{iso}} < 0.2E_T^{\gamma}$		
Jets	Jets At least two jets with $p_{\rm T} > 50$ GeV and $ y < 4.4$, <i>b</i> -jet veto		
Missing transverse momentum	$E_{\rm T}^{\rm miss}$ > 30 GeV and $m_{\rm T}^W$ > 30 GeV		
VBS topology	$N_{\ell} = 1, N_{\gamma} \ge 1, m_{\ell\gamma} - m_Z > 10 \text{ GeV}$		
	$\Delta R_{\min}(\ell, j) > 0.4, \ \Delta R_{\min}(\gamma, j) > 0.4, \ \Delta R_{\min}(\ell, \gamma) > 0.4$		
	$\Delta R_{\min}(j_1, j_2) > 0.4, \ \Delta \phi_{\min}(E_{\mathrm{T}}^{\mathrm{miss}}, j) > 0.4$		
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1}, p_{\text{T}}^{j2} > 50 \text{ GeV}$		
	$m_{jj} > 500 \text{ GeV}, \ \Delta y_{jj} > 2$		
Fiducial measurement	VBS topology		
Differential measurement	VBS topology \oplus ($m_{jj} > 1000$ GeV, $N_{jets}^{gap} = 0$, and $\xi_{W\gamma} < 0.35$)		

MC samples

Signal. Sh-2.2.11 Nominal, MG5 systematic Irreducible bkg. Sh-2.2.11 Nominal, MG5 systematic

Reducible prompt bkgs.

Non-prompt backgrounds used for DD fakes estimates

Process	Prompt/Non-prompt	Generator	ME Accuracy	PDF	Shower & Hadronization	Parameter Tune
EW Wγjj	Prompt	Madgraph5	LO	NNPDF3.1 LO	Pythia8+EvtGen	A14
)	Sherpa 2.2.12	LO	NNPDF3.0 NLO	Sherpa	Default
QCD Wyjj	Prompt	Sherpa 2.2.11	NLO	NNPDF3.0 NLO	Sherpa	default
		Madgraph5	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
EW Zγjj	Prompt	Madgraph5	LO	NNPDF3.1 LO	Pythia8+EvtGen	A14
QCD Zyjj	Prompt	Sherpa 2.2.11	NLO	NNPDF3.0 NLO	Sherpa	default
tīγ	Prompt	Madgraph5	LO	NNPDF2.3 LO	Pythia8+EvtGen	A14
$tW\gamma$	Prompt	Madgraph5	LO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
$tq\gamma$	Prompt	Madgraph5	LO	NNPDF3.0 NLO	Herwig7+EvtGen	Default
Single Top	Prompt	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
W+jets	Non-Prompt	Sherpa 2.2.11	NLO	NNFDF3.0 NNLO	Sherpa	Default
Z+jets	Non-Prompt	Sherpa 2.2.11	NLO	NNPDF3.0 NNLO	Sherpa	Default
Diboson	Non-Prompt	Sherpa 2.2.12	NLO	NNPDF 3.0 NNLO	Sherpa	Default
Dijet	Non-Prompt	Pythia8	LO	NNPDF2.3 LO	Pythia8+EvtGen	A14
EW Wjj	Non-Prompt	Sherpa 2.2.1	LO	NNPDF3.0 NNLO	Sherpa	default
EW Zjj	Non-Prompt	Sherpa 2.2.1	LO	NNPDF3.0 NNLO	Sherpa	default
tī	Non-Prompt	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14
tW	Non-Prompt	Powheg	NLO	NNPDF3.0 NLO	Pythia8+EvtGen	A14

MadGraph & Sherpa signal comparison

- The difference certainly comes from having the **3rd jet included in the matrix element in Sherpa**.
- Diagrams with gluon emission from the incoming or outgoing quarks interfere destructively, resulting in a suppression of centrally produced jets. (More details)
- Sherpa sample predicts more hadronic activity in the gap between the two leading jets. $\eta_{i1} + r$

