Measurements of energy correlators inside jets and the determination of α_{s}

Zhejiang University

第十四届全国粒子物理学术会议,Aug 14,2024

Zhen Lin

Zhejiang University

Energy correlator for α_S extraction

World average: $\alpha_{\rm S}(m_{\rm Z}) = 0.1180 \pm 0.0009$

Previous Extraction of α_s using Energy correlator:

Q: *O*(100GeV) ~ *O*(TeV)

Lack of extractions in low Q region

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

Motivation

- Study Jet Formation
 - Parton shower => Confinement => Final Hadrons
- Extract α_{s}
 - Complementary phase space, in collinear region
 - Typical energy scale: ~ $p_T^{jet} * x_L/5$, O(10 GeV)
 - High Precision calculation available: NLO+NNLLapprox
- Observe asymptotic freedom
 - $\alpha_{\rm s}$ running along energy scale

Measurements of energy correlators inside jets and the determination of α_s

Analysis strategy

Events	• • • • • • • • • • • • • • • • • • •
	QCD process, Central
	8 jet pT regions in 97
	Neutral & charged pa
	•••••••••••••••••••••••••••••••
Unfolding	Perform <mark>3d unfolding</mark> u
	•••••••••••••••••••••••
Uncertainty	Statistical correlatio
	•
Extraction of α_S	Comparing unfolded
	• • • • • • • • • • • • • • • • • • • •

dijet region, only take the two leading jets	
~ 1784 GeV: probe the energy scale dependency	
rticles with $p_T > 1$ GeV: all particles included	
p to particle level: p_T^{jet} , x_L , and energy weight w_{ij}	
n and systematic uncertainties	
· · · · · · · · · · · · · · · · · · ·	
E3C/E2C distributions to NLO+NNLLapprox predictions	
· · · · · · · · · · · · · · · · · · ·	

Datasets: Data & MC simulations

DATA (HIPM & no-HIPM)

- /JetHT/Run2016*-17Jul2018*/MINIAOD

SIMULATION (preVFP & postVFP)

To derive migration matrix and systematic uncertainties (PDF, QCD scales...)

- MadGraph5+Pythia8: /QCD_HT*_TuneCP5_PSWeights_13TeV-madgraphMLM-pythia8/ RunIISummer20UL16MiniAOD*/MINIAODSIM
- MINIAODSIM
- MINIAODSIM

- Pythia8.240 (nominal): /QCD_Pt_*_TuneCP5_13TeV_pythia8/RunIISummer20UL16MiniAOD*/MINIAODSIM

- Herwig7.1.4: /QCD_Pt-15to7000_TuneCH3_Flat_13TeV_herwig7/RunIISummer19UL16MiniAOD*-106X*/

- MadGraph5+Herwig7:/QCD HT* TuneCH3 13TeV-madgraphMLM-herwig7/RunllSummer20UL16MiniAOD*/

Measurements of energy correlators inside jets and the determination of α_{s}

E2C & E3C : constituents unfolding

Unfolding: detector level -> particle level

Unfold jet constituents instead of distribution:

- p_T^{jet} , x_L and energy weight, 3D unfolding
- 10 * 22 * 20 = 4400 bins

•D'Agostini: iterative bayesian

Unfolding

Measurements of energy correlators inside jets and the determination of α_s

E2C & E3C : statistical correlation

Multi entry distribution for every jet, two jets in an event and normalization requirement

Detector level => Unfolding => Normalization

Use independent statistics for E2C,E3C to avoid further correlation

Zhejiang University

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

Unfolded E3C vs MC

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

Boundaries shift with jet pT

 $Q \propto x_L^* p_T^{jet}$ $p_T^{jet} \uparrow, x_L \downarrow$ Boundary

 $x_L \approx \frac{0.8}{p_T^{jet}}$ $x_L \approx \frac{1}{p_T^{jet}}$ 20 I I

Unfolded E3C vs MC

Zhejiang University

Data vs various parton shower model, difference ~ 10%

No model match data well in all p_t^{jet} regions

- - : Exp systematic
 - : Theo systematic

Unfolded E3C vs MC

Zhejiang University

Exp sys:

- Unfolding model: Pythia, Herwig, MG+Pythia, MG+Herwig
- Neutral, photon, charged particle energy scale
- Jet energy scale, jet energy resolution
- Pileup, tracking efficiency, trigger inefficiency (prefiring)

Theo sys:

- QCD scale in parton shower
- QCD scale in hard scattering
- Underlying event + parton shower tune

• PDF

Unfolded E3C/E2C vs MC

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

Benefit of taking ratio

- Data MC difference: $\sim 10\% \Rightarrow \sim 3\%$
- Exp sys: ~ 8% => ~ 3%

All models agree well

 $p_T^{jet} \uparrow$, Slope \downarrow

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

Unfolded E3C/E2C vs NNLLapprox

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

Chen, Gao, Li, Xu, Zhang, and Zhu,

arXiv:2307.07510

1.02 Ratio 0.98 Ö 1.02 0.98 0.1 1.02 ∞ 0.98 1.02 0.98

Analytical predictions

- NNLL_{approx}: Parton level E3C/E2C
 - -2nd order hard function approximation
- Same phase space as the analysis

Hadronization factors

- Bin by bin factor
 - average of Pythia&Herwig
- E2C, E3C: 5 35%
- E3C/E2C: 2%

第十四届全国粒子物理学术会议, Aug 14

16/19

Unfolded E3C/E2C vs NNLLapprox

Zhejiang University

Shape of data agrees with NNLLapprox prediction within uncertainty

Theo sys:

(shape only, no normalization effect)

- QCD scale of NNLL_{approx} prediction
- Hadronization factors
- -QCD scale in hard scattering
- -Underlying event + parton shower tune PDF

Unfolded E3C/E2C vs NNLLapprox

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

- - Color confinement
 - Asymptotic freedom
- 4% precision of $\alpha_{\rm S}$, the most precise using jet substructure to date

- Energy Correlators provide new ways to understand the jet formation

Measurements of energy correlators inside jets and the determination of α_s

