

The Quantum Simulation on a (1+1)D Sphaleron Model

Min Huang,¹

Ying-Ying Li,² Yandong Liu,³ Lian-Tao Wang,⁴ Hao Zhang⁵

The Institute of High Energy Physics

¹huangmin@ihep.ac.cn ²yingyingli@ustc.edu.cn ³vdliu@bnu.edu.cn

⁴liantaow@uchicago.edu

⁵zhanghao@ihep.ac.cn

The Sphaleron Solution

- The static unstable vacuum solution at which the non-contractible loop in the field configuration space of the gauge field reaches its saddle point is the generalized sphaleron solution.
- It is a physically static solution governing the thermal equilibrium dynamics between vacuum states with different N_{CS} . Its dynamics are crucial but challenging to simulate on classical computers.

Min Huang,, Ying-Ying Li,, Yandong Liu,, Lian-Tao Wang,, Hao Zhang • The Quantum Simulation on a (1+1)D Sphaleron Model • August 14, 2024 2

The Sphaleron Solution

The sphaleron solution in the *Weinberg-Salam model* is given by Manton which reach its saddle point at $\mu = \pi/2$ has important implications in theories of baryogenesis.

Quantum Computing Applied to High-Energy Physics

- Quantum computing capabilities:
 - Experimental data analysis
 - Lattice gauge calculations
- Physical properties:
 - Intrinsic physical properties align with particle physics to address classical computation blind spots (e.g., sign problem)
- High-energy physics simulations:
 - Simulating field structures
 - Modeling evolution behavior

Quantum Simulation Challenges

Immature technology:

- Theoretical error-correction structure undeveloped
- Extremely limited number of available qubits
- Theoretical challenges
 - Variety of particles and multi-level symmetries
 - Dependence on algorithm design
 - Truncating infinite-dimensional Hilbert space to finite spaces
- Current status
 - Utilizing low-dimensional models
 - Techniques for truncating Hilbert space
 - Analyzing feasibility of quantum simulation

The (1+1)D Sphaleron Model

 \blacksquare O(3) non-linear sigma model:

$$S_{0} = \frac{1}{2g^{2}} \int d^{2}x \mathcal{L}_{0} = \frac{1}{2g^{2}} \int d^{2}x (\partial_{\mu}\vec{n})^{2}$$
$$|\vec{n}|^{2} = 1$$

Extra symmetral breaking term:

$$\mathcal{L} = \mathcal{L}_0 - \mathcal{L}' = \frac{1}{2g^2} (\partial_\mu \vec{n})^2 - \frac{\omega^2}{g^2} (1 + n_z)$$

Field configuration:

 $\vec{n}(\xi(x),\eta) = (\sin\eta\sin\xi(x),\sin\eta\cos\eta(1-\cos\xi(x)), -\sin^2\eta\cos\xi(x) - \cos^2\eta)$

$$\lim_{x \to -\infty} \xi(x) = 0 \quad \lim_{x \to +\infty} \xi(x) = 2\pi$$

Min Huang,, Ying-Ying Li,, Yandong Liu,, Lian-Tao Wang,, Hao Zhang • The Quantum Simulation on a (1+1)D Sphaleron Model • August 14, 2024 6

The (1+1)D Sphaleron Model

The (1+1)D Sphaleron Model

The sphaleron solution:

$$E = \frac{\sin^2 \eta}{g^2} \int dx \left(\frac{1}{2} \left(\frac{\partial \xi}{\partial x} \right)^2 + \omega^2 (1 - \cos \xi) \right)$$
$$\xi = 2 \arcsin(\operatorname{sech}(\omega x)) \quad \eta = \frac{\pi}{2} \quad E_{\operatorname{sph}} \bigg|_{\eta = \frac{\pi}{2}} = \frac{8\omega}{g^2}$$

$$H = \frac{g^2}{2a} \sum_{k=-N}^{N} \vec{L}_k^2 - \frac{1}{ag^2} \sum_{k=-N}^{N-1} \vec{n}_k \vec{n}_{k+1} + \frac{a\omega^2}{g^2} \sum_{k=-N}^{N} n_k^z,$$

Change the form:

$$H = \frac{\sin^2 \eta_0}{ag^2} \sum_{k=-N}^{N} (a^2 \omega^2 (1 - \cos \xi_k) + (1 - \cos(\xi_k - \xi_{k+1})))$$

Boundary condition and Sphaleron solution:

$$\eta_0 = \frac{\pi}{2}, \xi_0 = \pi, \xi_{-N} = 0, \xi_N = 2\pi$$

$$E_{\rm sph,lat} \left| \stackrel{aN \to \infty, a \to 0}{\to} E_{\rm sph} \right|_{\eta = \frac{\pi}{2}}$$

• The field configuration at volume of $\frac{6}{\omega}$:

Min Huang,, Ying-Ying Li,, Yandong Liu,, Lian-Tao Wang,, Hao Zhang • The Quantum Simulation on a (1+1)D Sphaleron Model • August 14, 2024

Constructing quantum gates and quantum algorithms

Hamiltonian in the form of Pauli quantum gates:

$$|n\rangle = \cos \frac{\theta}{2} |0\rangle + e^{i\varphi} \sin \frac{\theta}{2} |1\rangle$$

 $\langle n | \hat{\sigma}_i | n \rangle = n_i.$

$$\mathcal{H} = -\frac{1}{ag^2} \sum_{k=-N}^{N} \vec{\sigma}_k \vec{\sigma}_{k+1} + \frac{a\omega^2}{g^2} \sum_{k=-N}^{N} \sigma_k^z$$

Boundary condition

$$\theta_k^{\rm sph} = \xi_k^{\rm sph} - \pi, \varphi_k^{\rm sph} = {\rm Const}$$

Initial Hamiltonian -

$$\mathcal{H}_{\mathrm{in}} = \sum_{k=-N}^{N} \frac{a\omega^2}{g^2} \sigma_k^z$$

- Initial States: The central qubit on (0, 0, 1), the rest on (0, 0, -1)
- Boundary Condition

$$\theta_0 = 0, \theta_{-N} = -\pi, \theta_N = \pi$$

• Adiabatic algorithms for $\bar{g} = \frac{1}{ag^2}, \bar{\omega} = \frac{a\omega^2}{a^2}$

$$\begin{split} U(t) &= \mathcal{T}\left[e^{-i\int_{0}^{t}d\tau H(\tau)}\right] \approx \prod_{s=0}^{S} e^{i\left(H_{g}\left(\frac{st}{s}\right) + H_{\omega}\right)\frac{t}{3}} \\ &\approx \prod_{s=0}^{S} \left(e^{-i\sum_{i=-N}^{N-1} (\sigma_{i}^{x}\sigma_{i+1}^{x} + \sigma_{i}^{y}\sigma_{i+1}^{y})\overline{y}\frac{st}{s}\frac{t}{2S}} e^{i\sum_{i=-N}^{N-1} (\sigma_{i}^{x}\sigma_{i+1}^{x})\overline{y}\frac{st}{s}\frac{t}{2S}} e^{-i\overline{\omega}\frac{t}{S}\sum_{i=-N}^{N}\sigma_{i}^{z}} \\ &e^{i\sum_{i=-N}^{N-1} (\sigma_{i}^{x}\sigma_{i+1}^{x})\overline{y}\frac{st}{s}\frac{t}{2S}} \frac{t}{s}\sum_{i=-N}^{N-1} (\sigma_{i}^{x}\sigma_{i+1}^{x} + \sigma_{i}^{y}\sigma_{i+1}^{y})\overline{y}\frac{st}{s}\frac{t}{2S}} \\ &e^{i\sum_{i=-N}^{N-1} (\sigma_{i}^{x}\sigma_{i+1}^{x})\overline{y}\frac{st}{s}\frac{t}{2S}} e^{i\sum_{i=-N}^{N-1} (\sigma_{i}^{x}\sigma_{i+1}^{x} + \sigma_{i}^{y}\sigma_{i+1}^{y})\overline{y}\frac{st}{s}\frac{t}{2S}}} \\ \end{split}$$

The Quantum Simulation by Classical Computer

Simulation Results

Simulation Results

The energy of simulation final states with fixed $t\,=\,15$

The energy of simulation final states with fixed $\Delta t = \frac{1}{15}$

Simulation Results

Simulation Results

The configuration of simulation states with boundary conditions matching

to the therotical states

The energy error of simulation states with boundary conditions matching

to the therotical states

Referance I

- Jack Y. Araz, Sebastian Schenk, and Michael Spannowsky. "Toward a quantum simulation of nonlinear sigma models with a topological term". In: *Phys. Rev. A* 107.3 (2023), p. 032619.
- [2] Peter Brockway Arnold and Larry D. McLerran. "Sphalerons, Small Fluctuations and Baryon Number Violation in Electroweak Theory". In: *Phys. Rev. D* 36 (1987), p. 581.
- [3] Christian W. Bauer et al. "Quantum Simulation for High-Energy Physics". In: PRX Quantum 4.2 (2023), p. 027001.
- Falk Bruckmann, Karl Jansen, and Stefan Kühn. "O(3) nonlinear sigma model in 1+1 dimensions with matrix product states". In: *Phys. Rev. D* 99.7 (2019), p. 074501.
- [5] Michela D'Onofrio, Kari Rummukainen, and Anders Tranberg. "Sphaleron Rate in the Minimal Standard Model". In: *Phys. Rev. Lett.* 113.14 (2014), p. 141602.

Referance II

- [6] C. J. Hamer, John B. Kogut, and Leonard Susskind. "Strong Coupling Expansions and Phase Diagrams for the O(2), O(3) and O(4) Heisenberg Spin Systems in Two-dimensions". In: *Phys. Rev. D* 19 (1979), p. 3091.
- [7] Frans R. Klinkhamer and N. S. Manton. "A Saddle Point Solution in the Weinberg-Salam Theory". In: *Phys. Rev. D* 30 (1984), p. 2212.
- [8] N. S. Manton. "Topology in the Weinberg-Salam Theory". In: 28 (1983), p. 2019.
- [9] Emil Mottola and Andreas Wipf. "UNSUPPRESSED FERMION NUMBER VIOLATION AT HIGH TEMPERATURE: AN O(3) MODEL".
 In: Phys. Rev. D 39 (1989), p. 588.
- [10] A. N. Redlich and L. C. R. Wijewardhana. "Induced Chern-simons Terms at High Temperatures and Finite Densities". In: *Phys. Rev. Lett.* 54 (1985), p. 970.

Thank You!