

First Results on Higgs Pair Production in Multi-Lepton Channels

<u>Cen Mo</u>^{1,2}, Yulei Zhang³, Liang Li¹

- 1. Shanghai Jiao Tong University
 - 2. APC-Université Paris Cité
- 3. University of Washington, Seattle

High Energy Physics Branch of CPS

Electroweak Symmetry Breaking

Direct measurement of λ_{HHH} via HH production Strength of λ_{HHH} relative to SM prediction $(\lambda_{HHH}/\lambda_{SM}) = \kappa_{\lambda}$

Higgs Self-Coupling

- Higgs boson discovered 11 years ago (no deviations from SM observed so far)
- Higgs can couple to Higgs itself (λ_{HHH} , λ_{HHHH}). (The only particle in SM with self-coupling)
- λ_{HHH} is **not a free parameter** \rightarrow closure test of SM
- λ_{HHH} is **the parameter** regulating **Higgs potential shape** \rightarrow EWSB and vacuum stability test
- Deviation of λ_{HHH} from SM can allow *first order EW transition (BSM!)*

Refer to Katharine's Talk

Double Higgs

Double Happiness

Non-resonant HH production at the LHC

- Cross-section ~1000x smaller than single Higgs production for Run 2 (13 TeV)
- Test BSM effective models with anomalous couplings: κ_{λ} , κ_{t} , κ_{v} , and κ_{2v}

Balance between branching ratio and final states

No single "Golden" channel

BR (%)	bb	WW	ττ	ZZ	γγ
bb	34				
WW	25	4.6			
ττ	7.3	2.7	0.39		
ZZ	3.1	1.1	0.33	0.069	
γγ	0.26	0.10	0.028	0.012	0.00005

- Historic three HH channels: bbbb, $bb\gamma\gamma$, $bb\tau\tau$
- Other HH channels: $bbVV(0/1\ell)$, $bb\ell\ell$, and **multilepton**

First result

bbbb bbee multi-

lepton

$\textbf{HH} \rightarrow \textbf{Multilepton Channel}$

- Targeting on ~6.5% of HH events decay to final states where the HH system cannot be fully reconstructed and none of these are covered by other analyses.
- Use *a common analysis strategy* for the same final states
- Categorize final states by number of e, μ, τ_h, named by γγ + ML
 channel (3) and Multilepton channel (6), 9 orthogonal channels in total

- Three light leptons: $3\ell \rightarrow most sensitive channel$
- One/Two light leptons and two τ_h : $1/2\ell + 2\tau$
- 4 light leptons originated from $H \rightarrow ZZ$ and 2 b-jet: $b\overline{b}4\ell$

• Two photons with light leptons and τ_h : $\gamma\gamma + 1\ell 0\tau$, $\gamma\gamma + 0\ell 1\tau$, $\gamma\gamma + 2\ell$

Object Definition and Baseline Selection

- Huge efforts to **harmonize** object definitions and event selections.
- Dedicated control regions to estimate norm factors (included in simultaneous fit)
- Validation region to check
 Data/MC agreement

		Elect	rons		Muons			
	Baseline	Loose	Tight	$\gamma\gamma$ +ML	Baseline	Loose	Tight	$\gamma\gamma$ +ML
	(B)	(L)	(T)	(P)	(B)	(L)	(T)	(P)
Minimum $p_{\rm T}$		10 0	JeV		10 GeV			
	$(4\ell + bb \text{ channel: } 4.5 \text{ GeV})$			$(4\ell + bb \text{ channel: } 3 \text{ GeV})$				
η	$ \eta < 1.37$ or $1.52 < \eta < 2.47$			$ \eta < 2.5$				
Identification	Loo	se	Tight	Medium	Loose Medium		dium	
Isolation		X		Loose		X		Loose
PLV isolation	X	Loose	Tight	X	X	Loose	Tight	X
Charge mis-ID BDT	×			×	-			
e/γ ambiguity	X X X			X	-			
$ d_0 /\sigma_{d_0}$	< 5			< 3				
$ z_0 \sin \theta $	< 0.5 mm			< 0.5 mm				

Channel	l	$ au_{had-vis}$		Photons		$E_{\mathrm{T}}^{\mathrm{miss}}$	<i>b</i> -jets
γγ+2ℓ	$N_{\ell}(\mathbf{P}) + m_{2(\ell,\tau)} >$	$N_{\tau} = 2$ 12 GeV	E 105 Ge γ_1 γ_2	$N_{\gamma} = 2$ $T_{T}(\gamma_{1}) > 35 \text{ GeV}$ $V < m_{\gamma\gamma} < 160 \text{ GeV}$ $: p_{T}/m_{\gamma\gamma} > 0.35$ $: p_{T}/m_{\gamma\gamma} > 0.25$	$E_{\mathrm{T}}^{\mathrm{mi}}$	^{iss} > 35 GeV	$N_{b-\text{jet}} = 0$
γγ+ℓ	1ℓ(P)	$N_{\tau} = 0$	Ε 105 Ge γ ₁ γ ₂	$N_{\gamma} = 2$ $T_{T}(\gamma_{1}) > 35 \text{ GeV}$ $EV < m_{\gamma\gamma} < 160 \text{ GeV}$ $: p_{T}/m_{\gamma\gamma} > 0.35$ $: p_{T}/m_{\gamma\gamma} > 0.25$	γγ+e:	$E_{\rm T}^{\rm miss} > 35 {\rm C}$ $\gamma\gamma + \mu$: -	GeV $N_{b-\text{jet}} = 0$
γγ+τ	$N_{\ell(P)}=0$	$N_{\tau} = 1$	Ε 105 Ge γ ₁ γ ₂	$N_{\gamma} = 2$ $T_{T}(\gamma_{1}) > 35 \text{ GeV}$ $V < m_{\gamma\gamma} < 160 \text{ GeV}$ $T_{T}/m_{\gamma\gamma} > 0.35$ $T_{T}/m_{\gamma\gamma} > 0.25$	$E_{\mathrm{T}}^{\mathrm{mi}}$	iss > 35 GeV	$N_{b-\text{jet}} = 0$
Channel		l		$\tau_{\rm had-vis}$	Photons	Jets	<i>b</i> -jets
4ℓ+bb 3ℓ	$p_{T}(i)$		2V 2V 2V 26 GeV 5 GeV 5 GeV > 0.02 35 GeV GeV	$N_{\tau} = 0$ $N_{\tau} = 0$	$N_{\gamma} = 0$ $N_{\gamma} = 0$	$N_{\rm jet} \ge 2$ $N_{\rm iet} \ge 1$	$1 \le N_{b-\text{jet}} \le 3$ $N_{b-\text{jet}} = 0$
50	$ m_{3\ell} - m_{3\ell} = \frac{\ell_{SS1}(2)}{\ell_{SS2}(2)}$	$p_{1}, p_{T} > 10$ $p_{T} > 15$ $p_{T} > 15$ $p_{T} > 15$ $p_{T} > 15$ $p_{T} > 15$ $p_{T} > 15$ $p_{T} > 12$ Z-veto $m_{Z} > 10$	GeV GeV GeV GeV.	117 - 0	πγ = 0	rijet ⊑ x	n _{D-jet} = 0
2ℓSS	2ℓ(T)	$p_{\rm T} > 200$ SS charge $p_{\ell} > 12$ GeV	GeV 7	$N_{\tau} = 0$	$N_{\gamma} = 0$	$N_{\text{jet}} \ge 2$	$N_{b-\text{jet}} = 0$
2ℓSS+τ	2ℓ(T)	$p_{\rm T} > 200$ SS charge $p_{\ell} > 12$ GeV	GeV 7	$N_{\tau} = 1$ $p_{\rm T} > 25 {\rm GeV}$ OS charge to ℓ	$N_{\gamma} = 0$	$N_{\text{jet}} \ge 2$	$N_{b-\text{jet}} = 0$
2ℓ+2τ	m _ℓ	$2\ell(L)$ OS charge $\ell_{\ell} > 12 \text{ GeV}$ Z-veto	7	$N_{\tau} = 2$ OS charge $\Delta R(\tau_1, \tau_2) < 2$	$N_{\gamma} = 0$	-	$N_{b-\text{jet}} = 0$
<i>ℓ</i> +2 <i>τ</i>	m _ℓ	$1\ell(L)$ $\ell_{\ell} > 12 \text{ GeV}$	7	$N_{\tau} = 2$ OS charge $\Delta R(\tau_1, \tau_2) < 2$	$N_{\gamma} = 0$	$N_{\rm jet} \ge 2$	$N_{b-\text{jet}} = 0$

Channel	Region	Lepton Configuration	$N^{\sum Q_i^{\ell}}$	N	N	Additional Selections
channel	- 00	st st st st st	Thad	1 jet	1 b-jet	
4 <i>ℓ+bb</i>	tt CR	$\ell^{\pm}\ell^{+} + e^{\pm}\mu^{+}$	0	≥ 2	$\geq 1 \text{ and } \leq 3$	$ m_{\ell\ell}^{\rm SFOS} - m_Z > 10$
	ttZ CR	$\ell^{\pm}\ell^{+} + e^{\pm}\mu^{+}$	0	≥ 2	$\geq 1 \text{ and } \leq 3$	$ m_{\ell\ell}^{3703} - m_Z < 10$
	VV+Higgs CR	$\ell^{\pm}\ell^{+}\ell^{\pm}\ell^{+}$	0	≥ 2	0	I SEOS
	Z+jets CR	$\ell^{\pm}\ell^{+}\ell^{\pm}\ell^{+}$	0	≥ 2	$\geq 1 \text{ and } \leq 3$	$ m_{\ell\ell}^{\rm SFOS} - m_Z < 10$
	VR	$\ell^{\pm}\ell^{+}\ell^{\pm}\ell^{+}$	0	≥ 2	≥ 1 and ≤ 3	$ m_{4\ell}-m_{\rm H} \geq 10$
3ℓ	WZ CR	$\ell^{\pm}\ell^{\mp}\ell^{\mp}$	0	≥ 1	0	$\begin{aligned} m_{3\ell} - m_Z &> 10, m_{\ell\ell}^{\text{SFOS}} - m_Z < 1\\ E_{\text{T}}^{\text{miss}} &> 30 \end{aligned}$
	Conv CR	$\ell^{\pm}\ell^{\mp}\ell^{\mp}$	0	≥ 1	0	$ m_{3\ell}-m_Z <10$
	HF-e CR	$\ell^{\pm}e^{\mp}e^{\mp}$	0	≥ 2	≥ 2	$ m_{3\ell} - m_Z > 10$
	HF- μ CR	$\ell^{\pm}\mu^{\mp}\mu^{\mp}$	0	≥ 2	≥ 2	$ m_{3\ell} - m_Z > 10$
	VR	$\ell^{\pm}\ell^{\mp}\ell^{\mp}$	0	≥ 1	0	BDT < 0.55
Channel	Region	Lepton Configuration	$N_{ au_{ ext{had}}}^{\Sigma Q_i^\ell}$	Njet	N _{b-jet}	Additional Selections
2ℓSC	WZ CR	$\ell^{\pm}\ell^{\mp}\ell^{\mp}$	0	≥ 2	0	$ m_{3\ell} - m_Z > 10, m_{\ell\ell}^{\text{SFOS}} - m_Z < 10$ BDT < -0.4 , BDT _{Vjets} > -0.8 $E^{\text{miss}} > 30$
	VVjj CR	$\ell^{\pm}\ell^{\pm}$	0	≥ 2	0	$ m_{\ell\ell}^{\text{SFSS}} - m_Z > 10$ $BDT < -0.4, BDT_{\text{Vjets}} > -0.8$ $m_{\ell\ell} > 300$
	QmisID	$e^{\pm}e^{\pm}/e^{\pm}e^{\mp}$	0	< 2	0	$78.5 < m_{\ell\ell}^{\rm SFOS} < 102.3$ $76.5 < m_{\ell\ell}^{\rm SFOS} < 101.3$
	Conv CR	$\ell^{\pm}\ell^{\pm}$	0	≥ 2	≥ 1	
	QED CR	$\ell^{\pm}\ell^{\pm}$	0	≥ 2	≥ 1	
	HF-e CR	$\ell^{\pm}e^{\pm}$	0	2 or 3	1 or 2	
	$HF-\mu CR$	$\ell^{\pm}\mu^{\pm}$	0	2 or 3	≥ 1	
	VR	$\ell^{\pm}\ell^{\pm}$	0	≥ 2	0	BDT < -0.4
2ℓSC+τ	Fake τ_{had} CR	$\ell^{\pm}\ell^{\mp}$	1 ^{±1}	≥ 2	0	$ m_{ee}^{\text{SFOS}} - m_Z > 10$
	VV CR	$\ell^{\pm}\ell^{\pm}$	$1^{\pm 1}$	≥ 2	0	BDT < -0.2
	HF-e CR1	$\ell^{\pm}e^{\pm}$	$1^{\pm 1}$	≥ 2	1	
	HF-e CR2	$\ell^{\pm}e^{\pm}$	$1^{\pm 1}$	≥ 2	2	
	$HF-\mu CR$	$\ell^{\pm}\mu^{\pm}$	$1^{\pm 1}$	≥ 2	≥ 1	
	VR	$\ell^{\pm}\ell^{\pm}$	$1^{\pm 1}$	≤ 1	0	
<i>ℓ</i> +2 <i>τ</i>	Z+jets CR	l+l-	2 ^{±2}	≥ 0	0	$ m_{\ell\ell}^{\text{SFOS}} - m_Z < 10$
	tī CR	l+l-	$2^{\pm 2}$	≥ 0	1	$ m_{ee}^{\text{SFOS}} - m_Z > 10$
	VR	ℓ^{\pm}	$2^{\pm 2}$	≥ 2	0	
2ℓ+2τ	Z+jets CR	$\ell^+\ell^-$	$2^{\pm 2}$	≥ 0	0	$ m_{\ell\ell}^{\rm SFOS} - m_Z < 10$
	tī CR	$\ell^+\ell^-$	$2^{\pm 2}$	≥ 0	1	$ m_{se}^{\text{SFOS}} - m_Z > 10$
	VR	$\ell^{\pm}\ell^{\pm}$	$2^{\pm 2}$	≥ 0	0	
γγ+ML	Fit background CR	$0/\ell^{\pm}/\ell^{\pm}\ell^{\mp}$	≥ 0	≥ 0	0	$ m_{\gamma\gamma}-125 >5$

Analysis Strategy

Pre-selections

Background Modelling

→ MVA (BDTG)

Combined Fit

- Background Modelling:
 - Irreducible backgrounds: MC (with data-driven corrections in CR if dominant)
 - Fake backgrounds:
 - Template Fit (TF) for fake light leptons
 - Fake Factor (FF) / Scale Factor (SF) methods for fake τs
 - MC continuum background ($V + \gamma\gamma$, $t\bar{t} + \gamma\gamma$, $\gamma\gamma + jets$): modeled with an analytical function

	2 <i>ℓS</i> C	$2\ell SC + \tau$	3ℓ	$1\ell + 2\tau$	$2\ell + 2\tau$	$4\ell + b\overline{b}$	$\gamma\gamma + ML$	
Model		Gradient Boosted Decision Tree in TMVA						
Input variables	16	13	22	10	8	22	21	
K-Fold Training	2	5	3	2	2	Single	4	
Signal	ggF + VBF							
Background	$t\bar{t}, VV, Z +$ jets separately	VV	Total Background	VV	VV	Total Background	Total Background	
SR definition	> -0.4	> -0.2	> -0.55	_		_	_	

First Result for Multilepton

ML best-fit $\mu = -0.09 \pm 5.08$ $\gamma\gamma$ + ML best-fit $\mu = 18.40 \pm 11.02$ **Combined best-fit** $\mu = 5.78 \pm 4.19$

	-2σ	-1σ	Exp.	+1σ	+2σ	Obs.
Syst.	6	8	11	17	27	17

Systematics Breakdown

NPs	ML	$\gamma\gamma$ + ML	Combined
Data Statistics	77.6%	86.0%	80.5%
All Systematics	22.3%	14.0%	19.43%
MC Statistics	4.6%	< 0.1%	3.0%
Experimental	4.9%	0.2%	3.2%
Detector Response	4.0%	0.1%	2.6%
Background Estimation	0.6%	0.1%	0.4%
Theoretical	13.3%	13.9%	13.3%
Signal	10.1%	12.2%	10.5%
Backgrounds	3.6%	1.9%	3.1%

Dominated by Data Statistics $\sim 80\%$

Constraints on $\kappa_{\lambda} \& \kappa_{2V}$

- Constructed parameterized kappa workspace including κ_{λ} , κ_{t} , κ_{2V} , κ_{V} with 3 ggF and 6 VBF samples
- $4\ell + b\overline{b}$ is the most sensitive channel for κ_{λ} scan.
- κ_{λ} scan reaches **better results than** $b\overline{b}b\overline{b}$.

Summary

- First result of 95% C.L. combined observed upper limit reaches 17 on the *HH* cross-section over SM for *HH* \rightarrow multilepton final states with the full Run 2 data with 140⁻¹ fb luminosity. <u>arXiv: 2405.20040</u>
- Machine learning techniques are introduced in multilepton for the first time, achieved an order of magnitude increasement in expected sensitivity for 3-lepton channel.
 - 1.7-fold gain from higher luminosity
 - 2-fold enhancement with optimized identification and isolation criteria
 - 2.8-fold increase due to the advanced use of MVA techniques
- Advanced MVA techniques are under investigation for RUN 3:
 - Preliminary study of **using GNN on 3-lepton** gives expected upper limit (stats. only) of **20.51** (current: 23.82)

Kappa Scan in HH channels

Trigger

- The trigger strategies refer to the ttH multilepton 80 fb⁻¹ study [link] and follow the recommendation.
- single-lepton triggers (SL) and di-lepton triggers (DL)
- Schannels with ≥ 2 light leptons: **SL** OR **DL**
- (a) $1\ell + 2\tau_h$: SL
- Trigger Scale Factor calculated by TrigGlobalEfficiencyCorrection package [link]
- Oi-photon triggers are applied for $\gamma\gamma$ + multilepton:
 - HLT_g35_loose_g25_loose (2015/2016).
 - HLT_g35_loose_g25_medium_L12EM20VH (2017/2018).

	Single lepton triggers (2015)
μ	HLT_mu20_iloose_L1MU15, HLT_mu50
e	HLT_e24_lhmedium_L1EM20VH, HLT_e60_lhmedium, HLT_e120_lhloose
	Dilepton triggers (2015)
$\mu\mu$ (asymm.)	HLT_mu18_mu8noL1
ee (symm.)	HLT_2e12_lhloose_L12EM10VH
$e\mu$, μe (~symm.)	HLT_e17_lhloose_mu14
	Single lepton triggers (2016)
μ	HLT_mu26_ivarmedium, HLT_mu50
0	HLT_e26_lhtight_nod0_ivarloose, HLT_e60_lhmedium_nod0,
e	HLT_e140_lhloose_nod0
	Dilepton triggers (2016)
$\mu\mu$ (asymm.)	HLT_mu22_mu8noL1
ee (symm.)	HLT_2e17_lhvloose_nod0
$e\mu$, μe (~symm.)	HLT_e17_lhloose_nod0_mu14
	Single lepton triggers (2017 / 2018)
μ	HLT_mu26_ivarmedium, HLT_mu50
0	HLT_e26_lhtight_nod0_ivarloose, HLT_e60_lhmedium_nod0,
e	HLT_e140_lhloose_nod0
	Dilepton triggers (2017 / 2018)
$\mu\mu$ (asymm.)	HLT_mu22_mu8noL1
ee (symm.)	HLT_2e24_lhvloose_nod0
$e\mu, \mu e$ (~symm.)	HLT_e17_lhloose_nod0_mu14

$b \overline{b} 4 \ell$: MVA

MVA strategy

• 80% of the total events from the signal and full backgrounds which pass the event selection. The rest of events are used for testing.

Variables	Symbol	Description	Separation
lep_Pt_0	p_{T,l_1}	p_T of the first lepton	2.432e-01
lep_Pt_3	p_{T,l_4}	p_T of the fourth lepton	2.275e-01
m_41	m_{41}	Invariant mass of the quadruplet	2.235e-01
met met	MET	Missing transverse energy	2.131e-01
HT	HT	Scalar sum of p_T of all the objects	1.941e-01
lep_Pt_1	p_{T,l_2}	p_T of the second lepton	1.924e-01
m_12	$m_{\rm leading pair}$	Invariant mass of the leading lepton pair	1.812e-01
lep_Pt_2	p_{T,l_3}	p_T of the third lepton	1.600e-01
p_jj	$p_{T,jj}$	p_T of the leading jet pair	1.528e-01
lep_Etcone30_3	Etcone30 ₄	$(\sum_{\Delta R < 0.3} E_T)/E_T$ of the fourth lepton	1.331e-01
nbjets	$N_{b \text{Jets}}$	Number of <i>b</i> -jets	1.227e-01
lep_Etcone30_0	Etcone30 ₁	$(\sum_{\Delta R < 0.3} E_T)/E_T$ of the first lepton	1.165e-01
Dphi_met_jets	$\Delta_{\mathrm{MET}\&\mathrm{jets}}$	$\Delta \Phi$ of the MET and leading jets	1.062e-01
lep_Etcone30_1	Etcone30 ₂	$(\sum_{\Delta R < 0.3} E_T)/E_T$ of the second lepton	9.586e-02
jet_Pt_0	p_T , leading jet	p_T of the first jet	9.547e-02
lep_Etcone30_2	Etcone30 ₃	$(\sum_{\Delta R < 0.3} E_T)/E_T$ of the third lepton	7.792e-02
m_34	$m_{\rm sub-leading}$ pair	Invariant mass of the sub-leading lepton pair	6.869e-02
m_jj	m_{jj}	Invariant mass of the leading jet pair	6.680e-02
lep_Eta_3	η_4	η of the fourth lepton	2.084e-02
lep_Eta_2	η_3	η of the third lepton	1.970e-02
lep_Eta 1	η_2	η of the second lepton	1.474e-02
lep_Eta_0	η_1	η of the first lepton	9.422e-03

3*ℓ*: MVA

MVA strategy

• 3-fold training over signal and all background samples

Variable	Description	Separation
$\Delta R_{l_0 l_1}$	Distance in $\eta - \phi$ space between lepton 0 and lepton 1	32.62%
$m_{l_0 l_1}$	Invariant mass of lepton 0 and lepton 1	26.90%
min. m_{ll}^{OS}	Minimum invariant mass of opposite-sign lepton pairs	26.23%
ΔR_{l_2j}	Distance in $\eta - \phi$ space between lepton 2 and nearest jet	23.90%
$\Delta R_{l_1 l_2}$	Distance in $\eta - \phi$ space between lepton 1 and lepton 2	12.67%
min. m_{μ}^{OSSF}	Minimum invariant mass of opposite-sign same-flavor lepton pairs	11.41%
$m_{11}^{\text{Z-matched}}$	Invariant mass of lepton pair closest to Z mass	11.38%
m_{llljj}	Invariant mass of all three leptons and two leading jets	3.49%
m_{lll}	Invariant mass of all three leptons	2.94%
m_{l_2j}	Invariant mass of lepton 2 and nearest jet	2.40%
$m_{l_0 l_2}$	Invariant mass of lepton 0 and lepton 2	2.11%
₿ T	Missing transverse energy	1.80%
$\Delta R_{l_0,i}$	Distance in $\eta - \phi$ space between lepton 0 and nearest jet	1.20%
FlavorCategory	Categorization of lepton flavors, details in Sec. 7.2.1	1.17%
HT_{lep}	Scalar sum of lepton p_T 's and missing transverse momentum	0.96%
HT	Scalar sum of jet p_T 's	0.52%
$\Delta R_{l_1,j}$	Distance in $\eta - \phi$ space between lepton 1 and nearest jet	0.33%
$\Delta R_{l_0 l_2}$	Distance in $\eta - \phi$ space between lepton 0 and lepton 2	0.26%
m_{l_1j}	Invariant mass of lepton 1 and nearest jet	0.19%
HT _{jets}	Scalar sum of jet p_T 's	0.05%
$m_{l_0,j}$	Invariant mass of lepton 0 and nearest jet	0.01%
$m_{l_1 l_2}$	Invariant mass of lepton 1 and lepton 2	0.01%

0.0

0.2

0.4

0.6 Background InEff.

0.8

1.0

Low BDTG validation region: BDT score < 0.55Signal Region: BDT score ≥ 0.55

2*ℓSC*: MVA

Low BDTG validation region: BDT score < -0.4Signal Region: BDT score ≥ 0.4

8000

MVA strategy

- Three specific BDTs to target the leading three background. A combined BDT using them as input.
- Signal region: High BDT region of the combined BDT
- $M_{\ell\ell}$: invariant mass of the di-lepton system
- M_{all} : invariant mass of all selected objects: leptons and jets
- $M_{\ell 0 j}$: invariant mass of the leading lepton and its closest jet
- $M_{\ell 1 j}$: invariant mass of the subleading lepton and its closest jet
- M_{W0}^T and M_{W1}^T : the transverse mass of the leptonically decay W boson (reconstructed by the MET with leading lepton and subleading lepton, respectively).
- $E_{\rm T}^{\rm miss}$: missing transverse energy
- η_0 and η_1 : η of the leading and the subleading leptons
- $\Delta \eta$: absolute value of η_0 - η_1
- Number of jets
- H_T : scalar sum of transverse momentum of all visible objects
- $H_T(lep)$: scalar sum of transverse momentum of the leptons
- Dilep_type: =1 if $\mu\mu$, =2 if $e\mu$ or μe , =3 if ee
- $\Delta R_{min\ell 0 jets}$: minimum distance between the leading lepton and its closest jet
- $\Delta R_{min\ell | jets}$: minimum distance between the subleading lepton and its closest jet
- $\Delta R_{\ell\ell}$: Distance between the leading and the subleading leptons
- Total_charge: Sum of the charge of the leading and the subleading lepton which could be +2 or -2 as leptons have to have same electric charge. The total charge is specific to the *VV* BDT. In the 2LSS, *VV* background is mainly due to *WZ* events. Unlike the *HH* final state, a charge asymmetry is therefore expected in the *VV* final state.

8000 F

normalised to total Bkg

Cen Mo

: normalised to total Bkg

$2\ell SC + 1\tau_h$: MVA

MVA strategy

• 5-fold training over signal and dominant background samples (VV)

0.2

74.3

8.0

14.3

2.7

3.8

4.5

4.6

1.6

BDTG

113.9

Validation region: nJets < 2Signal Region: BDT score ≥ -0.2 & nJets ≥ 2

BDTG response

Variable	Description	Rank	Separation
			power
$\Delta R(\ell_0, \ell_1)$	Distance between leading and sub-leading leptons	1	12.48%
$M(\ell_0, \text{ jet}_{\text{leading}})$	Invariant mass of leading lepton and leading jet	2	11.57%
$M(\ell_0, \text{ closet} - \text{jet})$	Invariant mass of leading lepton and it's closet jet	3	11.39%
$\Delta R(\ell_0, \text{ closet jet})$	Distance between leading lepton and it's closet jet	4	10.24%
$\Delta R(\ell_0, \text{ jet}_{\text{leading}})$	Distance between leading lepton and leading jet	5	9.11%
$M(\ell_1, \text{ jet}_{\text{leading}})$	Invariant mass of sub-leading lepton and leading jet	6	9.04%
$\Theta(boost\ell_0, \ell_1, \tau_{had}, jet_{leading})$	Angle between tau and leading jet after	7	8.50%
	lorentz boost to two leading leptons system		
$\Theta(boost\ell_0, \ell_1, \tau_{had}, jet_{sub-leading})$	Angle between tau and sub-leading jet after	9	6.87%
	lorentz boost to two leading leptons system		
$\Delta R(\ell_1, \text{ closet jet})$	Distance between sub-leading lepton and it's closet jet	10	6.60%
$\Delta R(boost\ell_0, \tau_{had}, \ell 0, jet_{sub-leading})$	Distance between leading lepton and sub-leading jet after	11	6.48%
	lorentz boost to tau and leading leptons system		
$M(\tau_{\rm had}, \ell closet)$	Invariant mass of tau and it's closet lep	12	6.00%
$\Delta R(boost\ell_1, \tau_{had}, \ell_1, jet_{leading})$	Distance between sub-leading lepton and leading jet after	13	5.88%
	lorentz boost to tau and sub-leading leptons system		
$M(\ell_0, \text{ jet}_{\text{sub-leading}})$	Invariant mass of leading lepton and sub-leading jet	14	5.85%

 $1/2\ell + 2\tau_h$: MVA

MVA strategy

HH signal is trained against VV. The V + jets and tt
 background samples are not used in the training due to the low statistics.
 (no impact)

• Odd-Even training.

Variable	Description	Separation power
$M(\ell_0, \text{ jet})$	Invariant mass of lepton and its closest jet	27.34%
$M(au_{ m had0}, au_{ m had1})$	Ditau invariant mass	21.61%
$\Delta R(\ell_0, \text{ jet}_{\text{lead}})$	Distance between lepton and leading jet	16.81%
$\Delta R(\ell_0, \tau_{ m had0} \tau_{ m had1})$	Distance between lepton and ditaus	16.70%
$jet_{lead} p_T$	Leading jet transverse momentum	16.57%
$\Delta R(\ell_0, \text{ jet}_{\text{sublead}})$	Distance between lepton and sub-leading jet	10.06%
$M(\ell_0, au_{ m had0} au_{ m had1})$	Invariant mass of lepton and ditaus	7.42%
Sum $p_T(\ell_0, \text{ jet})$	Vector sum of lepton and it's closest jet transverse momenta	5.41%
Sum $p_T(\tau_{had0}, \tau_{had1})$	Vector sum of ditau transverse momenta	4.28%
MET	Missing energy	3.65%

Variable	Description	Separation power
$M(\ell_0, \ell_1)$	Dilepton invariant mass	29.04%
Lepton flavor	Bin 1 $\mu\mu$, bin 2 and 3 opposite flavor, bin 4 ee	23.58%
$M(au_{ m had0}, au_{ m had1})$	Ditau invariant mass	22.84%
$\Delta R(\ell_0, \ell_1)$	Distance between leading and sub-leading leptons	14.28%
Sum $p_T(\tau_{had0}, \tau_{had1})$	Sum of ditau transverse momenta	9.95%
$\Delta R(\ell_1, \tau_{\rm had0})$	Distance between sub-leading lepton and leading tau	6.95%
$\Delta R(\ell_0, \tau_{\rm had0} \tau_{\rm had1})$	Distance between leading lepton and ditaus	6.01%
$M(\ell_1, \tau_{ m had0})$	Invariant mass of sub-leading lepton and leading taus	5.35%

HH Combination

Cen Mo