

Higgs and HH combinations at the CMS experiment 14th Aug 2024

Jialin Guo On behalf of the CMS Collaboration

Jialin Guo

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

PAPER LINK

Combination of single-H and double-Higgs measurements

- Test compatibility with SM
 - Signal strength of single-H combination Signal strength of HH combination
- Measurement of H coupling to fermions and vector bosons •HHVV coupling (κ_{2V}) from VBF HH production
- Constrain on the Higgs boson self-coupling λ

Outline

Why a H+HH Combination

- fundamental test of SM($\kappa_{\lambda} = \kappa / \kappa_{SM}$)
- other single-H coupling fixed to SM

Jialin Guo

中国物理学会

Input Analysis

All the main H production and decay modes covered

Analyses for HH production targeting GGF,VBF and V-associated production Differences with respect to single-H and HH combinations of HIG-22-001

- Do not consider in this combination
 - $H \rightarrow invisible$ (does not constrain on κ_{λ})

•
$$H \to Z\gamma$$

- Sensitivity to κ_{λ} is negligible because of the large Stat. Uncertainties
- $HH \rightarrow bbZZ(4l)$: low sensitivity and high overlap with HZZ(4l).

Removal of overlapping categories between single-H and HH. Optimized to provide maximum sensitivity to k_{λ}, k_V, k_F

				Single	-Higgs						
Process	$H \rightarrow ZZ \rightarrow 4l$	$H \rightarrow bb$	$VH(H \rightarrow bb)$	$(b) \qquad ttH(H \to bb)$	ttH(multilepton)	$H ightarrow \mu \mu$	H	$\rightarrow \gamma \gamma$	H ightarrow au au		
Paper	<u>HIG-19-001</u>	<u>HIG-19-003</u>	<u>HIG-18-01</u>	<u>6 HIG-17-026</u>	<u>HIG-19-008</u>	<u>HIG-19-006</u>	HIG-I HIG-I	<u>9-015</u> / 9-018	<u>HIG-19-01(</u>	<u>)</u> <u>H</u> IC	
Lumi	138	138	77	36	138	138		38	138		
Phase-space	STXS I.2	Inclusicve	Inclusicve	Inclusicve	Inclusicve	Inclusicve	STXS I.2	/Inclusive	STSX 1.2	ST	
				Double	e-Higgs						
Process	$HH \rightarrow l$	$b\gamma\gamma$ $HH \rightarrow bb\tau\tau$		$HH \rightarrow bbbb(resolved)$	$H \rightarrow bbbb(resolved) \mid HH \rightarrow bbbb(booste$		$l) \qquad VHH \rightarrow bbbb \qquad HH \rightarrow$		$4V/2V2\tau/4\tau$	$HH \rightarrow$	
Paper	Paper <u>HIG-19-0</u>		<u> -IIG-20-010</u>	<u>HIG-20-005</u>	<u>B2G-22-003</u> <u>HIG</u>		<u>-22-006</u> <u>HIC</u>		-21-002	HIG-2	
Productior	Production ggHH/qq		gHH/qqHH	ggHH/qqHH	ggHH/qqHH	V	VHH		gHH	ggHH/	
Jialin Guo				1	中国物理学会			14 Aug. 2024			

Signal strength(μ_H) from single-H combination

- Best fit shifted of ~4% with respect to HIG-22-001, but still within 1σ uncertainty
- Small reduction of uncertainty with respect to HIG-22-001
- Good compatibility of impact between this combination

Jialin Guo

• Probably driven by switch of $H \rightarrow \tau \tau$ from inclusive(obs. $\mu_H = 0.81 \pm -0.10$) to STXS(obs. $\mu_H = 0.95 \pm -0.13$) • Probably driven by switch of $H \rightarrow WW$ from inclusive(obs. $\mu_H = 0.93 + 0.10/-0.09$) to STXS(obs. $\mu_H = 0.95 \pm -0.08$)

中国物理学会

Signal strength(μ_{HH}) from HH combination

•Good compatibility of μ_{HH} and impact are found between expected and observed

Jialin Guo

中国物理学会

Likelihood Scans of k_{λ}

Jialin Guo

•Results compatible with SM within 2σ in [-1.2, 7.5] •Best fit k_{λ} from single-H combination shifted to higher value

中国物理学会

Likelihood Scan of k_{λ} under more general assumptions

Jialin Guo

中国物理学会

HH channels

• κ_t arise mostly from the contamination of single-H events in the HH enrich categories and from κ_t dependence of the H branching fractions • The single-H combination provides a stringent constraint on κ_t

Jialin Guo

- The constraint on k_{2V} is driven by the HH categories enriched in VBF HH events
- Exclusion of $k_{2V} = 0$ for any value of k_V observed at 5σ significance. ✓ Same conclusion as HIG-22-001. But we don't fixed coupling in single-H

Jialin Guo

• The single-H channels have no sensitivity on the k_{2V} but provide a stringent constraint on k_V

中国物理学会

- H and HH combination provide fundamental extensive tests of SM
- •All k_{λ} measurements compatible with SM within 1 or 2σ , depending on the input channels
- •Observed result constraints k_{λ} at 95 % CL with $k_V, k_{2V}, k_t, k_b, k_{\tau}, k_{\mu}$ floating in interval $-1.4 < k_{\lambda} < 7.8$ •With other POIs fixed: $-1.2 < k_{\lambda} < 7.5$

•Exclusion of $k_{2V} = 0$ for any value of k_V observed at 5σ significance

Summary

Thanks !

Jialin Guo

Backup

Jialin Guo

Table 3: Summary of overlaps between the considered single H and HH analyses included in this combination. Non-overlapping analyses are indicated by a \checkmark , overlaps removable with negligible impacts on the combination are indicated by a \mathcal{X} .

single H / HH analysis	$ m HH ightarrow \gamma \gamma b \overline{b}$	$HH \rightarrow \tau \tau b \overline{b}$	$\rm HH \to 4b$	$VHH \rightarrow b\overline{b}b\overline{b}$	HH (leptons)	$HH \rightarrow WW$	ob
$\mathrm{H} ightarrow \gamma \gamma$	\mathcal{X}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$H \rightarrow WW$	\checkmark	\checkmark	\checkmark	\checkmark	\mathcal{X}	\mathcal{X}	PAS
tīH (leptons)	\checkmark	\mathcal{X}	\checkmark	\checkmark	\checkmark	\mathcal{X}	. /
$H \rightarrow \mu \mu$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$H \rightarrow ZZ \rightarrow 4l$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
$H \rightarrow b\overline{b} (ggH, VH, t\overline{t}H)$	\checkmark	${\mathcal X}$	\mathcal{X}	\checkmark	\checkmark	\mathcal{X}	
$H \rightarrow \tau \tau$	\checkmark	\mathcal{X}	\checkmark	\checkmark	\checkmark	\checkmark	
$VHH \rightarrow b\overline{b}b\overline{b}$	\checkmark	\checkmark	${\mathcal X}$	\checkmark	\checkmark	\checkmark	

Jialin Guo

H couplings to fermions and vector bosons

Jialin Guo

Coupling modifiers κ to quantify couplings deviations from SM predictions ($\kappa_f = \frac{\kappa}{\kappa_{SM}}$)

H couplings VS particle mass 138 fb⁻¹ (13 TeV) CMS v 3√ m_H = 125.38 GeV 10⁻¹ p v a κ^{\dagger} 10⁻² • Vector bosons Third-generation fermions 10⁻³ Second-generation fermions ···· SM Higgs boson 10-4 1.4 Ratio to SM 1.2 1.05 1.00 1.0 0.95 0.8 0.6 10² 10-1 10 Particle mass (GeV)

Agreement with SM for masses within 0,1-200GeV

Test XS and BR compatibility with the SM

$\mu = 1.002 \pm 0.057 [\pm 0.036(theory) \pm 0.033(exp.) \pm +0.029(stat.)]$

Jialin Guo

138 fb⁻¹ (13 TeV) ±1 s.d. (stat) ±1 s.d. (syst)

Overall good compatibility with SM Small excesses in μ_{tH} and in $\mu_{Z\gamma}$

➡Systematics uncertainties crucial for H measurements

Reduce exp. Uncertainties with

new or improved approaches

 Need of more precise theory predictions

Upper limit on HH signal strength

Jialin Guo

Constraints on κ_{λ}

Observed results compatible to SM predictions

中国物理学会

Constrains on κ_{2V}

Observed results compatible to SM predictions

Likelihood scan of $(\kappa_{\lambda}, \kappa_{2V})$ with considering only boosted HH(4b)

 $\mathbf{r}_{2V} = 0 \text{ excluded at } > 5\sigma \text{ assuming } \kappa_{\lambda} = \kappa_t = \kappa_V = 1$ $\mathbf{r}_{2V} = 0 \text{ excluded at } > 3\sigma \text{ for any value of } \kappa_{\lambda}$

中国物理学会

Evolution from the H discovery towards HL-LHC

Jialin Guo

➡At HL-LHC high precision tests of the SM

- Precision below 5% for all the considered couplings
- →Projection to $3000 fb^{-1}$ on $\mu_{HH} < 1$
 - Evidence of SM HH expected with 4σ for <u>CERN</u> <u>YR</u>
 - Further improvement possible through new techniques and ideas (observation?)
- ➡Potential for more extensive test SM, e.g. EFT

q'

Jialin Guo

中国物理学会

Evolution since discovery

<u>H Discovery</u> (up to 10.4 fb⁻¹ at 7-8 TeV) $\mu = 0.87 \pm 0.23$ [dominated by stat.]

Run 1 comb (up to 24.8 fb⁻¹ at 7-8 TeV)

This combination (up to 138 fb⁻¹ at 13 TeV)

today and even more in future

Ο

Need of more precise theory predictions Ο

Jialin Guo

- $\mu = 1.00 \pm 0.13$ [+0.08/-0.07 (theory) ± 0.07 (exp.) ± 0.09 (stat.)]
- $\mu = 1.002 \pm 0.057 [\pm 0.036 (theory) \pm 0.033 (exp.) \pm 0.029 (stat.)]$
- \succ Systematics uncertainties crucial for H measurements
 - Reduce exp. uncertainties with new or improved approaches

Test XS and BR compatibility with the SM CMS

Jialin Guo

H couplings with more general assumptions

Measurement assuming effective couplings for ggH, Hvv, and HZv

Assuming also H decays to invisible(≔missing p_⊤) & undetectable (≔non-closure of other BR's to unity)

What's new in full Run 2 HH searches @CMS?

larger than gain in integrated luminosity

Extensive usage of ML tools

- Selections targeting VBF HH production mechanism +
- New final states, e.g. multilepton

Jialin Guo

Improvement wrt HH searches with 2016 dataset much

Boosted topologies

20

Outlook for the future

Jialin Guo

Ο

Ο

Evidence of SM HH expected with 4σ Further improvement possible through new techniques & $ideas \rightarrow observation?$

15% precision @HE-LHC \rightarrow 5% precision with 100 TeV & 30 ab⁻¹

中国物理学会

Trilinear self-coupling in single-H mechanisms k_λ-dependent NLO electroweak corrections to single-H XS and BR

Examples of k_{λ} -dependent diagrams for single-H prod. mechanisms O(k_{λ})

Jialin Guo

Example of k_{λ} -dependent diagrams for H \rightarrow VV decay

One universal correction for H wave-function renormalization $O(k_{\lambda}^{2})$

14 Aug. 2024

27

Modification of differential. XS Larger variations for VH and ttH 1.30 1.20 ttH 13 TeV LHC 1.10 1.00 BSM/SM 0.90 0.80 0.70 0.60 0.50 $\kappa_3=0$ $\kappa_3=2$ $\kappa_3=-10$ 0.40 Eur. Phys. J. C (2017) 77: 887 a=+10 0.30 100 300 400 200 500 0 p_T(H) [GeV]

Modification of total XS vs k, Cross section (fb) **σ(pp → H(H)+X)** qqH WH 10⁶ √s=13 TeV Eur. Phys. J. C (2017) 77: 887 PhysRevD.98.114016 ggHH arXiv:2003.01700 qqHH 10⁴ 10^{3} 10^{2} ggHH 31 fb 10 qqHH 1.7 fb -20 -15 °' SM -10-5 10 15 20 5 κλ

- Effect on double-H @LO \rightarrow large variation
- Around SM single-H XS's are larger than double-H

Global fit

- deviations in other H couplings
- Simultaneous fit of all H couplings
- Complementarity of constraints from single-H and HH fully exploited in their combination

CERN Yellow report Vol. 7 (2019)

• BSM phenomena affecting k_{λ} should reasonably introduce

Introduction

- Higgs boson self-coupling (λ) is a crucial missing element to complete the picture about Higgs boson
- \bullet
 - a fundamental test of SM and has important physics implications (e.g. stability of the universe)
- coupling modifier: $\kappa_{\lambda} = \lambda / \lambda_{SM}$

Self-coupling arises from Higgs field potential expansion around its v.e.v.

Jialin Guo

中国物理学会

