

Search for T-odd mechanisms beyond the SM with a transversely polarized electron target?

Boxing Gou (勾伯兴) gouboxing@impcas.ac.cn

第十四届全国粒子物理学术会议● 青岛 August 13-18, 2024

> Puzzle in transverse spin asymmetry $A_{\perp}^{\bar{e}p}/A_{\perp}^{\bar{e}A}$

New T-odd mechanisms search via $A_{\perp}^{p\vec{e}}$?

Opportunities in China

A bit of history

Small coupling $(1/137) \implies$ negligible higher order contributions

A bit of history

Small coupling $(1/137) \implies$ negligible higher order contributions

Two methods (both based on one-photon exchange) to study proton from factors

1. Rosenbluth separation 2. polarization transfer

A bit of history

Small coupling $(1/137) \implies$ negligible higher order contributions

Two methods (both based on one-photon exchange) to study proton from factors

1. Rosenbluth separation 2. polarization transfer

yield different results

T-odd effects with transverse spin asymmetry

Transverse spin asymmetry arises from processes beyond one photon exchange

T-odd effects with transverse spin asymmetry

- > Target spin asymmetry in $\vec{eN} \rightarrow eN: A_{\perp} \sim \alpha \sim 10^{-2}$
 - HallA@JLab

> Beam spin asymmetry in $\vec{e}N \rightarrow eN: A_{\perp} \sim \alpha \cdot \frac{m_e}{E} \sim 10^{-5} - 10^{-6}$

- SAMPLE@MIT-Bates
- HAPPEX, GO, Q_{weak} @JLab
- A4@MAMI

T-odd effects with transverse spin asymmetry

- > Target spin asymmetry in $\vec{eN} \rightarrow eN: A_{\perp} \sim \alpha \sim 10^{-2}$
 - HallA@JLab

> Beam spin asymmetry in $\vec{e}N \rightarrow eN: A_{\perp} \sim \alpha \cdot \frac{m_e}{E} \sim 10^{-5} - 10^{-6}$

- SAMPLE@MIT-Bates
- HAPPEX, GO, Q_{weak} @JLab
- A4@MAMI

Relativistic effect

TPE amplitudes

TPE amplitudes

<u>Ground proton state</u> G_E and G_M as input All πN intermediate states (both resonant and nonresonant) $\gamma N \rightarrow \pi N$ amplitudes from MAID 2007

TPE amplitudes

Ground proton state G_E and G_M as input Resonant states of spin-parity $1/2^{\pm}$ and $3/2^{\pm}$ (W ≤ 1.8 GeV) $\gamma N \rightarrow X$ amplitudes from the latest CLAS exclusive meson production

Exp. data vs calculation $(A_{\perp}^{\vec{e}p})$

Surprising discrepancies between theoretical and exp. data of different laboratories

12

Exp. data vs calculation $(A_{\perp}^{\overline{e}A})$

Not only $\vec{e}p$, but also $\vec{e}A$

Optical Theorem: $\sigma_{tot} = \frac{4\pi}{k} Im(0)$

Phy. Rev. C 103, 064316(2021) by

O. Koshchii, M. Gorchtein, X. Roca-Maza, and H. Spiesberger

PREX, PREXII, CREX @ JLab

Phy. Rev. Lett. 109, 192501(2012), Phy. Rev. Lett. 128, 142501(2022)

E _{beam} (GeV)	Target	$\langle \theta_{\rm lab} \rangle$ (deg)	$\langle Q^2 angle$ (GeV ²)	$\langle \cos \phi \rangle$	5	\sim PREX-2 > 2	$\frac{1}{\sigma}$		CREX	
0.95 0.95 0.95	¹² C ⁴⁰ Ca ²⁰⁸ Pb	4.87 4.81 4.69	0.0066 0.0065 0.0062	0.967 0.964 0.966	0 (mdd) -5		0.95 GeV	2.18 GeV		
2.18 2.18 2.18 2.18	¹² C ⁴⁰ Ca ⁴⁸ Ca ²⁰⁸ Pb	4.77 4.55 4.53 4.60	0.033 0.030 0.030 0.031	0.969 0.970 0.970 0.969	د –10	$ \begin{array}{c} $	0.10	0.15	0.20	
							Q (GeV)			

How to understand the surprise

- More intermedite state?
- MAID database and CLAS data need improvement?

How to understand the surprise

- More intermedite state?
- MAID database and CLAS data need improvement?
- New unknown boson?
- \succ Hard to test new-physics hypothesis in $\vec{e}p \rightarrow ep$
 - Possible intermediates: $X = N, \pi N \dots \rightarrow Non-pQCD$ uncertainty
 - Lorentz effect with \vec{e} beam $\rightarrow A_{\perp} \propto \frac{m_e}{E} \sim 10^{-6}$ (tiny signal)

New idea: $p\vec{e} \rightarrow pe$?

With proton beam and electron target at HIAF/EicC-pRing, ultra low $Q_2(< 2 \times 10^{-4})$ can be accessed in pe scattering

Transverse spin asymmetry: pe vs ep

New unknown boson?

 $\geq \ln \vec{e} p \rightarrow e p$

- possible intermediates: X = N, $\pi N \dots \rightarrow Non-pQCD$ uncertainty
- Lorentz effect wit \vec{e} beam $\rightarrow A_{\perp} \propto \frac{m_e}{E} \sim 10^{-6}$ (tiny signal)
- \succ In $\vec{pe} \rightarrow pe$ (very-low Q_2)
 - $X = N \rightarrow A_{\perp}$ calculated with G_E and G_M (no theoretical uncertainty)
 - No Lorentz effect $\rightarrow A_{\perp}$ increases by 3 orders

Opportunities at HIAF and pRing

- HIAF is under construction
- EicC is being proposed
- National Key R&D Program received from MOST for polarized ion source and polarized hydrogen target → pol. e⁻ target

- Surprising theory-experiment discrepancies in both A_{\perp}^{ep} and $A_{\perp}^{\vec{e}A}$
- New approach to search new T-odd mechanisms via A_{\perp}^{pe} with polarized electron target
- Opportunities at proton machines (HIAF and EicC-pRing)
- Collaborations are more than welcome

Thanks for your attention !

Physics with $p\vec{e} \rightarrow pe - proton radius puzzle$

- Proton electromatic form factors (G_E, G_M) measured in ep elastic scattering
- Proton charge radius (r_p) extracted from G_E $r_p = -6 \frac{dG_E}{dQ^2} \Big|_{Q^2 \to 0}$
- *r_p* (G_E) from PRad is different from previous measurements

Physics with $p\vec{e} \rightarrow pe - proton radius puzzle$

 $> A_{\perp}$ only sensitive to G_{E} and $G_{M} \rightarrow New$ approach to study proton EM radius

Possible to distinguished PRad and Mainz measurements

 \succ New physics if A_{\parallel} differs significantly from the SM calculation

Physics with $p\vec{e} \rightarrow pe - proton radius puzzle$

Exp. data vs calculation $(A_{\perp}^{\vec{e}p})$

