

中國科學院為維約昭納完備 Institute of High Energy Physics Chinese Academy of Sciences

Combination of searches for Higgs boson pair production in ATLAS Run2

Shaoguang Wu

IHEP

第十四届全国粒子物理学术会议,青岛

Motivation

Higgs potential is important to understand the mechanism of electroweak symmetry breaking

- Properties of Higgs boson and its coupling to fermions and vector bosons have been scrutinized.
 - No clear indications for new physics yet...

Self-interaction still not determined.

• Test SM and look for BSM

2

Di-Higgs production at LHC

> HH production via gluon-gluon fusion (ggF):

• accounts for more than 90% in the SM

> HH production via vector-boson fusion (VBF):

• Advantage in κ_{2V} determination

coupling modifier: $\kappa_{\lambda} \equiv \lambda_{HHH} / \lambda_{HHH}^{SM}, \kappa_{2V}, \kappa_{t} \dots \dots$

 $\sigma^{SM}_{ggF} = 31.05 f b^{+6\%}_{-23\%} \left(scale + m_{top} \right) + 3.0\% (PDF + \alpha_s)$

Fucus on HH signal strength, κ_{λ} and κ_{2V}

$$\sigma_{VBF}^{SM} = 1.73 f b_{-0.04\%}^{+0.03\%} \left(scale + m_{top} \right) + 2.1\% (PDF + \alpha_s)$$

3

Previous HH+H combination publication

Phys. Lett. B (843) (2023) 137745

Previous HH+H combination considered the three most sensitive channels:

- bbbb, bbγγ, bbττ
- Single Higgs don't improve the accuracy but is helpful to constrain BSM model

Analyses Overview

- Results from all 5 channels are combined to derive upper limits on signal strength and interpreted within the k framework
- Accounts for about 50% of di-Higgs decay
- Overlap checks are performed across all channels
 - Less than 1% overlaps in the signal regions, negligible

channel	BR	Lumi[fb^{-1}]	Paper(Draft)
bbbb	0.339	126(resolved) 140(boosted VBF)	<u>PhysRevD.108.052003</u> <u>arXiv.2404.17193</u>
bbyy	2.6×10^{-3}	140	JHEP01(2024)066
bb au au	0.073	140	arXiv:2404.12660
$bbll + E_T^{miss}$	0.029	140	JHEP02(2024)037
multi-lepton	0.065	140	arXiv:2405.20040

Statistical model

> Combined likelihood is the product of likelihoods from each channel

> The profile likelihood ratio is constructed as

$$\tilde{\lambda}(\mu) = \begin{cases} \frac{\mathcal{L}(\mu, \hat{\hat{\theta}}(\mu))}{\mathcal{L}(0, \hat{\theta}(0))} & \hat{\mu} < 0, \\ \frac{\mathcal{L}(\mu, \hat{\hat{\theta}}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\theta})} & \hat{\mu} \ge 0. \end{cases}$$

one-sided test statistics

> The test statistics for limit setting is:

$$\tilde{q}_{\mu} = \begin{cases} -2\ln\tilde{\lambda}(\mu) & \hat{\mu} \leq \mu \\ 0 & \hat{\mu} > \mu \end{cases} = \begin{cases} -2\ln\frac{\mathcal{L}(\mu,\hat{\hat{\theta}}(\mu))}{\mathcal{L}(0,\hat{\theta}(0))} & \hat{\mu} < 0, \\ -2\ln\frac{\mathcal{L}(\mu,\hat{\hat{\theta}}(\mu))}{\mathcal{L}(\hat{\mu},\hat{\theta})} & 0 \leq \hat{\mu} \leq \mu, \\ 0 & \hat{\mu} > \mu. \end{cases}$$

Systematic Uncertainties and Correlation

- Nuisance parameters from the same systematic sources, ideally, should be correlated due to their expected similar impacts on the analysis
 - Variations in calibrations or uncertainty models across different channels
 - NPs might be over-constrained in one analysis while showing shifts/pull in another → lead to improper final results

Correlation scheme (Baseline):

- Common systematic uncertainties sources are correlated
- Over-constrained (<0.7σ) or strongly-pulled (>0.5σ), but rank top 20 NPs are decorrelated

Check on NP Correlation are performed

	Expected	Observed
Fully decorrelate	2.200	2.653
Baseline	2.363	2.895

Large influence	Expected	Observed
Baseline	2.363	2.895
Baseline but decorrelate THEO_ACC_HF_ggH	2.335	2.858
Baseline but decorrelate THEO_XS_*_ggFHH/VBFFH	2.224	2.708
Baseline but decorrelate both	2.200	2.670

Correlate th	Expected	Observed	
< 0.7 σ constraint or > 0.5 σ pulled	Baseline	2.363	2.895
< 0.5σ constraint or > 1.0σ pulled	Tighter threshold	2.338	2.904
No threshold	Fully correlated	2.321	2.926

negligible influence	Expected	Observed
Baseline	2.363	2.895
Baseline but correlate Lumi	2.363	2.895
Baseline but correlate signal PS	2.365	2.913
Baseline but correlate Z+HF NPs	2.362	2.899

Ranking with Observed Data

The ranking is consistent with the results reported in individual analysis (only show bbtautau here)

Combined observed data

limit on HH signal strength

Exp: $\mu = 1.0^{+1.0}_{-0.9}(stat)^{+0.7}_{-0.5}(syst)$ Obs: $\mu = 0.5^{+0.9}_{-0.8}(stat)^{+0.7}_{-0.6}(syst)$

- Obs. and exp. 95% CL upper limits on the SM HH signal strength in 5 channels and their combination
- All the limits obtained from individual channels agreed well with their paper

	Obs.	-2σ	-1σ	Exp.	1σ	2σ	Exp. SM
$b\bar{b}b\bar{b}$	5.35	4.34	5.82	8.08	12.19	19.11	9.13
$bar{b} au^+ au^-$	5.86	1.77	2.38	3.31	5.04	8.06	4.30
$bar{b}\gamma\gamma$	3.96	2.70	3.63	5.04	7.76	12.54	6.35
$bar{b}\ell\ell$ + $E_{ m T}^{ m miss}$	9.68	7.40	9.94	13.79	19.97	30.33	14.63
multilepton	16.95	6.10	8.19	11.36	17.248	27.27	12.16
Combined	2.87	1.27	1.71	2.37	3.57	5.57	3.44

- Expected limits is improved by 19% with respect to previous result
 - 4% from two new channels bbll and ML
 - 15% from improvements of the updated Legacy Run2 analysis

Xsec Limit vs к-modifiers

- > An alternative and more intuitive statistical interapretation for 95% CL exclusion limits on the coupling κ -modifiers
 - Compare with the theory prediction, the allowed
 - κ_{λ} range is obs.[-1.0,7.0],exp.[-0.5,6.4]
 - *κ*_{2V} range is obs.[0.5,1.5],exp.[0.4,1.6]

VBF (with ggF fixed to SM prediction)

likelihood scan on κ_{λ} and κ_{2V}

The other κ parameters are fixed to the SM prediction for 1D scan

- The observed (expected) 95% CL interval is $-1.2 < \kappa_{\lambda} < 7.2$ ($-1.6 < \kappa_{\lambda} < 7.2$), representing the best expected sensitivity to the Higgs boson self-coupling to date
- The observed (expected) 95% CL interval is $0.6 < \kappa_{2V} < 1.5$ ($0.4 < \kappa_{2V} < 1.6$). The boosted VBF bbbb channel is most sensitive

> To reduce model dependence, two-dimensional contours are also performed

Summary

> Searches for non-resonant di-Higgs production using latest Run 2 results in ATLAS

- Combine bbbb, bbtautau, bbyy, bbll and ML channels
- > Provides the best expected sensitivities to the *HH* production cross-section
 - the upper limit on the production rate is 2.9 (2.4) times SM prediction for observed (expected) result
- > Provides the best expected sensitivities to the Higgs boson self-coupling
 - The observed (expected) 95% CL interval is $-1.2 < \kappa_{\lambda} < 7.2$ ($-1.6 < \kappa_{\lambda} < 7.2$)
- Results agree well with the SM predictions

12

Additional slides

shaoguang.wu@cern.ch