

Measurement of Higgs Boson mass and width with LHC run2 data at the **ATLAS experiment**

- Yangfan Zhang (张阳帆) **University of Science and Technology of China (中国科学技术大学)**
 - 第十四届全国粒子物理学术会议 青岛, 2024.8

Higgs width Γ_H : Predicted by theory once m_H is given

 \rightarrow Deviation from predicted value will indicate new physics

Such as the composite Higgs model and Higgs invisible decay into light dark matter

Yangfan Zhang (USTC)

Introduction

Experimental measurement for Higgs mass and width is important

15 August, 2024

Golden channels on LHC: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ Due to model independence and good resolution

Run2 $H \rightarrow \gamma \gamma$, Phys. Lett. B 847 (2023) 138315

Benefit from the new linearity fit method for e/γ energy scale calibration!

Yangfan Zhang (USTC)

Run2 $H \rightarrow ZZ^* \rightarrow 4l$, Phys. Lett. B 843 (2023) 137880

 $m_H = 125.17 \pm 0.11$ (stat.) ± 0.09 (syst.) GeV $m_H = 124.99 \pm 0.18$ (stat.) ± 0.04 (syst.) GeV

Statistical dominant

• Combine 4 Input measurements: (Run1, Run2)×($H \rightarrow \gamma\gamma, H \rightarrow ZZ^* \rightarrow 4l$)

Float parameters	$H \rightarrow ZZ^* \rightarrow 4l$	$H o \gamma \gamma$
Run1	Higgs mass, 1 global signal strength for all production modes	Higgs mass, 2 signal strengths for ggF+ttH and VBF+VH production
Run2	Higgs mass, 4 signal strengths for different categories	Higgs mass, 14 signal strengths for different categories

order to reduce model dependence

Combined measurement for m_H

Signal yield normalization float independently among categories and channels in

• By combining all 4 individual analysis: $m_H = 125.11 \pm 0.11 = 125.11 \pm 0.09$ (stat.) ± 0.06 (syst.) GeV \rightarrow 0.09% precision: The most precise result up to date!

Good compatibility of 4 input measurements: p-value = 18%

Phys. Rev. Lett. 131 (2023) 251802

Source	Systematic uncertainty on m_H []
$e/\gamma E_{\rm T}$ -independent $Z \rightarrow ee$ calibration	44
$e/\gamma E_{\rm T}$ -dependent electron energy scale	28
$H \rightarrow \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16
e/γ photon conversion reconstruction	15
e/γ energy resolution	11
$H \rightarrow \gamma \gamma$ background modelling	10
Muon momentum scale	8
All other systematic uncertainties	7

Systematic uncertainty decomposition

Yangfan Zhang (USTC)

Higgs Width Measurement

- Combining on- and off-shell measurements allows us to measure κ and Higgs width simultaneously
 - Previously done by <u>ATLAS</u> and <u>CMS</u> with $H \rightarrow ZZ^*$ and $H^* \rightarrow ZZ$
 - $H \rightarrow WW$ done in Run1

Higgs width from $H \rightarrow ZZ$ channel

95% CL upper limt: 10.2 MeV

Γ_H from κ_t with Four-Top and On-Shell Higgs

- Different from the existing analysis, we rely on tree-level Higgs-Top Yukawa coupling
 - Unlike the current $H \rightarrow ZZ$ or $H \rightarrow WW$ analysis, it's not affected by the presence of unknown colored particles
- production

Yangfan Zhang (USTC)

Inclusive normalized cross-section parameterized into κ_t :

$$\mu_{t\bar{t}t\bar{t}} = 1.04 - 0.16\kappa_t^2 + 0.12\kappa_t^4$$

- Target at Multi-lepton final state
- Use Graph Neuron Network to separate signal and background processes

First observation with 6σ significance!

Yangfan Zhang (USTC)

Off-shell part: Four-Top Overview

Eur. Phys. J. C 83 (2023) 496

Interpreted into κ_t measurement:

95% CL upper limt: 2.3

On-shell part: Higgs Coupling Combination Overview

Covering all major Higgs production and decay modes at LHC. <u>Nature 607 52 (2022)</u>

from the on-shell part due to non-trivial overlap between them

Target processes	Ref.	
Off-shell measurer	nents	
$pp \rightarrow t\bar{t}t\bar{t}$		[23]
On-shell measurer	nents	
Production	Decay	
ggF, VBF, WH, ZH, <i>tī</i> H, tH	$H ightarrow \gamma \gamma$	[24]
$t\bar{t}H + tH$	$H \rightarrow b \bar{b}$	[25]
WH, ZH	$H \rightarrow b \bar{b}$	[26, 27]
VBF	$H \rightarrow b \bar{b}$	[28]
ggF, VBF, WH + ZH, <i>tī</i> H + tH	$H \rightarrow ZZ$	[29]
ggF, VBF	$H \rightarrow WW$	[30]
WH, ZH	$H \rightarrow WW$	[31]
ggF, VBF, WH + ZH, <i>tī</i> H + tH	$H \to \tau \tau$	[32]
$ggF + t\bar{t}H + tH, VBF + WH + ZH$	$H ightarrow \mu \mu$	[33]
Inclusive	$H \rightarrow Z\gamma$	[34]

• To combine with four-top measurement, $t\bar{t}H \rightarrow$ Multi-lepton channel is removed

Yangfan Zhang (USTC)

Upper limit on Γ_H

Submitted to PLB

15 August, 2024

Systematic uncertainty

Theory *tttt* theory Higgs boson theory Other theory Experimental Jet flavor tagging Jet and missing transverse energ Leptons and photons All other systematic uncertaintie

Imp	pact on 95% CI	L upper limit of Γ_H
Exp	pected [%]	Observed [%]
	37	33
	25	13
	5	6
	10	16
	2	2
	2	1
gy	< 1	< 1
	< 1	< 1
es	< 1	< 1

15 August, 2024

- Higgs Boson mass is measured from a combination of LHC Run1 and Run2 data in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ channels in ATLAS experiment: $m_H = 125.11 \pm 0.11$ GeV, which is the most precise measurement up to date
- A first measurement on Higgs Boson width based on tree-level Higgs-top Yukawa coupling is performed. The observed (expected) 95% CL upper limit for Γ_H is 445 (75) MeV
- Outlook:
 - Higgs mass: LHC combination to provide input for future Higgs analysis
 - Higgs width:
 - Improvement of four-top measurement during Run3 and High-Lumi LHC
 - Add $t\bar{t}$ measurement to constrain off-shell κ_t
 - Design $t\bar{t}H \rightarrow$ Multi-lepton to be orthogonal with four-top and constrain on-shell κ_t

Summary

Back up

Yangfan Zhang (USTC)

15 August, 2024

- Large Hadron Collider (LHC)
 - The largest and highest energy particle collider in the world
 - Proton beams collide at center-of-mass energy up to 13.6 TeV
 - \rightarrow Suitable to study Higgs boson physics

ATLAS experiment

- A Toroidal LHC Apparatus (ATLAS)
 - Largest particle detector in the world
 - Inner solenoid + outer toroidal magnetic field
 - Various sub-detectors to measure and reconstruct particle information

α : energy scale factor from standard calibration α' : extra factor for E_T dependent energy scale calibration

Yangfan Zhang (USTC)

Linearity fit

 $E^{\text{data,corr}} = E^{\text{data}} / [(1 + \alpha_i)(1 + \alpha'_i)]$

- theoretical uncertainties
 - Energy scale systematics uncertainties: $ATLAS_EG_SCALE_ZEESYST \leftrightarrow ATLAS_EM_ES_Z$ $ATLAS_PH_SCALE_CONVRADIUS \leftrightarrow ATLAS_EM_ConvRadius$
 - Resolution systematics uncertainties: ATLAS_EG_RESOLUTION_MATERIAL_RUN1_RUN2 ATLAS_EM_mRes_MAT \leftrightarrow ATLAS_EG_RESOLUTION_SAMPLINGTERM \leftrightarrow ATLAS_EM_mRes_ST ATLAS_EG_RESOLUTION_ZSMEARING ATLAS_EM_mRes_CT \leftrightarrow
 - Theoretical uncertainties:

 - ATLAS_QCDscale_qqH
 - $ATLAS_QCDscale_ggH \leftrightarrow ATLAS_QCDscale_ggH$ $ATLAS_QCDscale_VBF \leftrightarrow$ ATLAS_QCDscale_ttH ↔ ATLAS_QCDscale_ttH

Systematic uncertainty correlation scheme

• $H \rightarrow \gamma \gamma$ Run1+Run2: Correlate some NPs for energy scale, resolution and

Measurement Scenarios

- Generic Kappa Primary result. Couplings generated by loops are parameterized independently of the tree-level couplings.
 - Minimal model dependence in the treatment of the loop couplings.
- Resolved Kappa Secondary result. Loop level couplings are parameterized in terms of the tree level coupling modifiers.
 - Increased sensitivity from resolving the $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$ loops.

Droduction	Loops	Main	Effective	Decolved modifier
Production	Loops	interference	modifier	Resolved modifier
$\sigma(gg \to H)$	1	t-b	κ_g^2	$1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.000 \kappa_b^2$
$\sigma(qq' \to qq'H)$	-	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$
$\sigma(qqZH)$	-	-	-	κ_Z^2
$\sigma(ggZH)$	1	t–Z	-	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t$ $- 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$
$\sigma(WH)$	-	-	-	κ_W^2
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2
$\sigma(tHW)$	-	t-W	-	$2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$
$\sigma(tHq)$	-	t-W	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$
$\sigma(b\bar{b}H)$	-	-	-	κ_b^2
Partial decay width	h			
Γ^{bb}	-	-	-	κ_b^2
Γ^{WW}	-	-	-	κ_W^2
$\Gamma^{\tau\tau}$	-	-	-	κ_{τ}^2
Γ^{ZZ}	-	-	-	κ_Z^2
				$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$
$\Gamma^{\gamma\gamma}$	1	t-W	κ_{γ}^2	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$
				$-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$
$\Gamma^{Z\gamma}$	1	t-W	$\kappa^2_{(Z\gamma)}$	$1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 $
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2

- We remove the *ttH*(ML) input from the Higgs combination due to non-trivial overlap with the *tttt* measurement
 - The same sign lepton signature used to measure four tops enters 5 of the 7 signal regions of the *ttH*(ML) analysis, including the sensitive 2LSS and 3L channels
- The measurement of κ_t is slightly affected

	POI	Published Result	Result without $t\bar{t}H$ ML
-	κ_W	$1.05\substack{+0.06 \\ -0.06}$	$1.05\substack{+0.06 \\ -0.06}$
	κ_Z	$0.99\substack{+0.06\\-0.06}$	$1.00\substack{+0.05 \\ -0.06}$
	κ_{Zy}	$1.38\substack{+0.31 \\ -0.37}$	$1.39\substack{+0.31 \\ -0.37}$
	κ_b	$0.89\substack{+0.11 \\ -0.11}$	$0.91\substack{+0.12 \\ -0.11}$
	κ_g	$0.95\substack{+0.07 \\ -0.07}$	$0.96\substack{+0.08\\-0.07}$
	κ_{μ}	$1.06\substack{+0.25 \\ -0.30}$	$1.07\substack{+0.25 \\ -0.31}$
	$\kappa_{ au}$	$0.93\substack{+0.07 \\ -0.07}$	$0.93\substack{+0.07 \\ -0.07}$
	κ_t	$0.94\substack{+0.11 \\ -0.11}$	$0.86\substack{+0.13\\-0.13}$
	κ_γ	$1.01\substack{+0.06 \\ -0.06}$	$1.02\substack{+0.06\\-0.06}$

Yangfan Zhang (USTC)

Test on asimov, nominal upper limit = 18.2

Yangfan Zhang (USTC)

Dominant Systematics in Signal Strength Fits Before Combination

Yangfan Zhang (USTC)

Highest ranked

uncertainties are

generally theoretical.

Pre-fit impact on μ : ttH $\Delta \sigma / \sigma$ Δμ $\theta = \hat{\theta} + \Delta \theta$ $\theta = \hat{\theta} - \Delta \theta$ 0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 Post-fit impact on μ : ATLAS Internal $\theta = \hat{\theta} + \Delta \hat{\theta} \qquad \theta = \hat{\theta} - \Delta \hat{\theta}$ \sqrt{s} = 13 TeV, 139 fb⁻¹ - Nuis. Param. Pull tt+≥1b NLO match. SRbin1 ljets tt+≥1b NLO match. SRbin2 liets tt+≥1b Fraction tt+≥1b FSR tt+≥1b PS & had. dilep tt+≥1b NLO match. SRbin1 dilep tt+≥1b NLO match. CR ljets Wt PS & had. ttH NLO Match. k(tt+≥1b) tt+≥1b NLO match. SRbin2 dilep ttb pTbb shape ljets Wt diagram subtraction ttH PS & had. tt+≥1b NLO match. SRbin4 ljets tt+≥1b NLO match. SRbin5 ljets tt+≥1b ISR XS ttH QCD dy Wt generator tt+light PS & had. ttH(bb) -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 $(\hat{\theta} - \theta_0) / \Delta \theta$ $(\hat{\theta} - \theta_0) / \Delta \theta$

ATLAS

- Processes playing a major role in multiple input channels have correlated theoretical systematic uncertainties
- *ttH*, *tttt*, and *ttZ* are affected, details in backup
- The nominal and alternate *ttW* samples are different between the inputs, so we don't correlate the systematics
 - *ttH*(bb) uses MadGraph as nominal, Sherpa as alternate. Four-top uses Sherpa as nominal, FxFx as alternate _
- The cross-section and PDF uncertainties do not have the same values, but the impact is expected to be small

NP Name in the 4 tops WS	NP Name in the Nature WS	Ranking in 4 tops fit	Ranking in <i>ttH</i> (<i>l</i>
alpha_ttH_Gen	Theorysig_ME_ttH	> 30	9
alpha_ttH_PDF	TheorySig_PDF_ttH	> 30	> 20
alpha_ttH_PS	TheorySig_UEPS_ttH	5	14
alpha_ttH_Xsec	TheorySig_QCDscale_ttH_mu	> 30	18
alpha_ttH_varRF	TheorySig_ttH_Rad	> 30	> 20
alpha_tttt_Xsec	BkgTheory_tttt_XS_ttHbb	1	> 20
alpha_ttZ_Gen	BkgTheory_ttZ_Gen_ttHMLbb*	15	> 20
alpha_ttZ_PDF	<pre>BkgTheory_ttZ_XS_PDF_ttHMLbb*</pre>	> 30	> 20
alpha_ttZ_Xsec	<pre>BkgTheory_ttZ_XS_QCDscale_ttHMLbb*</pre>	> 30	> 20

Systematics Correlation - Theoretical

- Theoretical:
 - Shared uncertainties of $t\bar{t}H$, $t\bar{t}t\bar{t}$ and $t\bar{t}Z$ processes are correlated
- Luminosity:
 - Assigned extra uncertainty to cover the luminosity difference in different calibration schemes
 - Split the total uncertainty into 4 components to correlate different datasets

	δ_0	δ_1	δ_2	δ_3	$\sqrt{\Sigma_i \delta_i^2}$	Original δ
2015-2016	0.575%	0.101%	0.641%	0.074%	0.87%	0.87%
2015-2018	0.816%	0.143%	0.102%	0.019%	0.83%	0.83%

- Other experimental:
 - Correlate the shared uncertainties for jet, pileup reweighting, missing E_T , e/γ , lepton and so on

Yangfan Zhang (USTC)

- Four-top measurement has ttH as background
- We leave the normalization of the *ttH* process floating in the four-top workspace because the decay modes are not separated
- A full parameterization would have a <2% impact on the expected limit
 - Learn from ttH(ML) analysis: mostly WW and $\tau\tau$ decay
 - Studied by assuming either 100% WW or 100% $\tau\tau$ decay

	$t\bar{t}H$ profiled	$t\bar{t}H$ resolved as $t\bar{t}HWW$	$t\bar{t}H$ resolved as $t\bar{t}H au au$
Expected upper limit on Γ_H/Γ_{SM}	18.2	17.9	17.9

Also tested on observed data: 6% impact on the upper limit

- ttHbb measurement has four-top as background
- We leave the normalization of the four-top process fixed to the SM with a 50% cross-section uncertainty in the *ttH*(bb) workspace
- Four-top is a small background and the impact of changing the parameterization is negligible.
 - Studied by the inclusive parameterization for four-top cross-section in ttHbb

- correlate κ_{t} with four-top analysis
- Caveat: four-top analysis used bin-by-bin parameterization instead of the inclusive one

 $t\bar{t}t\bar{t}$ in Nature workspace fixed to SM $t\bar{t}t\bar{t}$ in Nature workspace correlated with

 $\mu_{t\bar{t}t\bar{t}} = 1.04 - 0.16\kappa_t^2 + 0.12\kappa_t^4$

	Expected upper limit on Γ_H/Γ_{SM}	
	18.2	
$t\bar{t}t\bar{t}$ analysis	18.3	

- Fit on observed data gives Γ_H best-fit
- Other POIs are also pulled aw
 - κ_{t} mostly pulled by four-top m
 - R_{Γ} and other κ pulled via on-s

Understand the observed best-fit value

$\sqrt{\Gamma}SM$ 31	POI	Best-fit value
$_{H}/1_{H}^{2} = 21$ as	R_{Γ}	20.963
	κ_t	1.877
	κ_Z	2.183
vav from 1	κ_W	2.308
	κ_b	2.000
easurement	$\kappa_{ au}$	2.037
	κ_{μ}	2.356
shell relationship	κ_{g}	2.094
	κ_{γ}	2.235
	$\kappa_{Z\gamma}$	3.040

Detailed systematic impact study

Systematics Model	Observed Limit on R_{Γ} (GenericKappa)	Expected Limit on R_{Γ} (GenericKappa)	
Nominal	108.6	18.2	
Remove All Theory	72.5 (33.2%)	11.5 (37%)	
Remove $t\bar{t}t\bar{t}$ Theory	94.2 (13.3%)	13.7 (25%)	
Remove $t\bar{t}t\bar{t}$ Cross-section Theory	98.7 (9.1%)	15.4 (15.4%)	
Remove $t\bar{t}t\bar{t}$ Generator Theory	105.3 (3.0%)	17.1 (6.0%)	
Remove $t\bar{t}t\bar{t}$ Parton Shower Theory	107.9 (<1%)	18.0 (1.1%)	
Remove other $t\bar{t}t\bar{t}$ Theory	108.5 (<1%)	18.2 (<1%)	
Remove Background Theory	91.1 (16.1%)	16.4 (9.9%)	
Remove Background Theory in ttHbb	92.5 (14.8%)	16.7 (8.2%)	
Remove Background $t\bar{t}+ \ge 1b$ Theory	95.3 (12.2%)	17.0 (6.6%)	
Remove Higgs Theory	102.2 (5.9%)	17.3 (4.9%)	
Remove All Experiment	106.2 (2.2%)	17.8 (2.2%)	
Remove FTAG	107.2 (1.3%)	17.9 (1.6%)	
Remove Jet+MET	108.2 (<1%)	18.1 (<1%)	
Remove Lepton+Photon	108.3 (<1%)	18.2 (<1%)	
Remove Others	107.6 (<1%)	18.1 (<1%)	
Stat-Only	67.8 (37.6%)	10.8 (41%)	

Yangfan Zhang (USTC)

15 August, 2024

27

Further resolve the loops

- ggF, $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$ loops contain the contribution from top-quark
- Can resolved them into couplings with SM particles

 \rightarrow 95% CL upper limit decreases from 445 MeV to 157 MeV after resolving the loops

Improvement due to stronger assumptions

Yangfan Zhang (USTC)

28

 K_t

The 2-dim contour's shape shrinks in κ_t direction after resolving the loops \rightarrow ggF and $H \rightarrow \gamma \gamma$ loops introduce extra constraint on

Results after resolving the loops

95% CL upper limit [MeV]

Yangfan Zhang (USTC)

