

Prospect on slepton search at CEPC@360 GeV

Lyu Feng

CEPC

吕峰 第十四届全国粒子物理学术会议 8月14-18日,青岛

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Introduction

SUSY reveals an unique symmetry relates matter and forces particles (fermions and bosons) together, may deeply solve current SM puzzles, such as dark matter ; dark energy; matter /anti-matter asymmetry; neutrino masses/mixing ; hierarchy problem; gravity in gauge theory and its unification . Sleptons masses may be lighter than squarks (~100 GeV).

Slepton search at CEPC@360GeV

- Signal sample designed in slepton and LSP mass phase space;
- Slepton mass is bounded by LEP/CEPC limit; LSP is bounded by the slepton mass
- Slepton decays into a lepton and a LSP with 100% BR

 e^{\pm}

 e^{\mp}

 τ^{\pm}

 τ^{\mp}

 $M_{\tau_{\sim}} = 160 \text{ GeV}$

 $M_{u\sim} = 170 \text{ GeV}$

Signal cross-section (LO) :

(a) direct stau production

 e^{\pm}

 e^{\mp}

mass. 14-18/Aug./2024

Signal xsection:

360GeV 1ab stau Analysis: preselection FulSim

300

250

350

 $M_{\tau\tau}$

H Total SM

Preselection:

- ✓ No tau ID
- ✓ Select two most energetic tracks (E>0.5GeV) as tau candidates

OS

Three signal Regions Mstau, MLSP ΔM 160, 50 GeV High 160, 110 Middle 160, 150 Low

14-18/Aug./2024

50

100

150

200

0

360GeV 1ab stau Analysis: N-1 plots

FulSim

- "N-1" distributions after signal region requirements for the direct stau pair production.
- All signal region requirements are applied except on the variable shown.
- The stacked histograms show the expected SM backgrounds.
- To illustrate, the distributions from SUSY reference points are shown as dashed line.
- The lower pad is the sensitivity Zn calculated with a statistical uncertainty and a 5% flat systematic uncertainty

Good optimized !

360GeV 1ab stau Analysis:Event criteria, yields

Table 1 Summary of selection requirements for the direct stau production signal region. DeltaM means difference of mass between $\tilde{\tau}$ and LSP

SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM	
$E_{ au^{\pm}} < 40 \text{ GeV}$	$E_{ au^\pm} < 1$	15 GeV	
$sumP_T > 50 \text{ GeV}$	$sumP_T > 20 \text{ GeV}$	-	
$2.55 < \Delta \phi(au^{\pm}, recoil) < 3.1$	$ \Delta \phi(au^{\pm}, recoil) < 3.1$	$ \Delta \phi(au^{\pm}, recoil) >$ 2.3	
-	$0.45 < \Delta R(\tau, \tau) < 1.7$	$\Delta R(au, au) > 0.45$	
$\Delta R(\tau^{\pm}, recoil) < 3.2$	$\Delta R(au^{\pm}, recoil) < 3.15$	$\Delta R(au^{\pm}, recoil) < 2.9$	
$M_{ au au} < 40 { m ~GeV}$	$M_{ au au}$ <25 GeV	$M_{ au au}$ <16 GeV	
$M_{recoil} > 180 \text{ GeV}$	$M_{recoil} > 280 { m ~GeV}$	$M_{recoil} > 325 \text{ GeV}$	

Table 2 The number of events in the signal regions for signal and SM backgrounds with statistical uncertainty for direct stau production

Process	SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM
$ZZ ext{ or } WW ightarrow au au u u$	79±7	111±8	59±6
au au	$16{\pm}4$	55±7	91±9
u Z, Z ightarrow au au	$169{\pm}10$	173 ± 10	$170 {\pm} 10$
ZZ ightarrow au au u u	$246{\pm}11$	97±7	$42{\pm}5$
$WW ightarrow \ell\ell u u u$	75±7	91±7	52 ± 6
$ u Z, Z ightarrow \mu \mu$	$30{\pm}4$	34 ± 5	163 ± 10
$\mu\mu$	-	$14{\pm}3$	81±7
ZZ or $WW ightarrow \mu \mu \nu \nu$	$37{\pm}5$	$5.9{\pm}1.9$	$8.2{\pm}2.2$
$ZZ ightarrow \mu \mu u u$	$10{\pm}3$	$4.4{\pm}1.7$	$22{\pm}4$
$e oldsymbol{v} W, W o au oldsymbol{v}$	118 ± 9	112 ± 8	41 ± 5
$e u W, W ightarrow \mu u$	115 ± 9	$20{\pm}4$	11 ± 3
$eeZ, Z \rightarrow \nu\nu$ or $e\nu W, W \rightarrow e\nu$	$104{\pm}8$	25 ± 4	$15{\pm}3$
eeZ, Z ightarrow u u	$4.6{\pm}1.3$	$0.4{\pm}0.4$	-
$vvH, H \rightarrow anything$	51 ± 6	$18{\pm}3$	$6.5 {\pm} 2.0$
Total SM	1053 ± 25	$760{\pm}22$	761±22
$m(\tilde{\tau}, \tilde{\chi}_1^0) = (160, 50) \text{ GeV}$	$1028{\pm}21$	$157{\pm}8$	9.4±2.0
$m(\tilde{\tau}, \tilde{\chi}_1^0) = (160, 110) \text{ GeV}$	$984{\pm}21$	1053 ± 22	151 ± 8
$m(\tilde{\tau}, \tilde{\chi}_1^0) = (160, 150) \text{ GeV}$	-	$3.1{\pm}1.2$	$1690{\pm}27$

Effects on Zn contour from stau sources (left) or sys. errors (right)

1ab 5% sys., Left/Right-hand up to 159 GeV; Combined up to 168.5 GeV

360GeV 1ab smu Analysis: Preselection

Preselection:

- ✓ No muon ID
- ✓ Select two most energetic tracks (E>0.5GeV) as muon candidate s
- ✓ OS

Three signal RegionsMstau,MLSPΔM170, 30 GeVHigh170, 120Middle170, 160Low

360GeV 1ab smu Analysis: N-1 plots

FulSim

M....

140

- ✓ "N-1" distributions after signal region requirements for the direct smu pair production.
- All signal region requirements are \checkmark applied except on the variable shown.
- ✓ The stacked histograms show the expected SM backgrounds.
- \checkmark To illustrate, the distributions from SUSY reference points are shown as dashed line.
- ✓ The lower pad is the sensitivity Zn calculated with a statistical uncertainty and a 5% flat systematic uncertainty

Good optimized !

F. Lyu Slepton search at CEPC@360GeV

360GeV 1ab smu Analysis: Criteria, Yields

Table 3 Summary of selection requirements for the direct smuon production signal region. DeltaM means difference of mass between $\tilde{\mu}$ and LSP

SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM
$E_{\mu} > 60 { m ~GeV}$	$E_{\mu} < 80~{ m GeV}$	-
$\Delta R(\mu, recoil) < 2.8$	$1.9 < \Delta R(\mu, recoil)$) <2.9
$M_{\mu\mu} < 87 \text{ GeV} \mid\mid \text{GeV } 95 < M_{\mu\mu} < 130 \text{ GeV}$	$M_{\mu\mu} < 80~{ m GeV}$	-
$M_{recoil} > 100 { m ~GeV}$	-	$M_{recoil} > 340 \text{ GeV}$
$M_{extra} < 15 \text{ GeV}$	$M_{extra} < 10 \text{ GeV}$	$M_{extra} < 10 \text{ GeV}$

Table 4 The number of events in the signal regions for signal and SM backgrounds with statistical uncertainty for direct smuon production

Process	SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM
$ZZorWW ightarrow \mu\mu u u$	333±14	869±23	19.4±3.4
μμ	64±6	441±17	78±7
$ u Z, Z ightarrow \mu \mu$	19±4	$204{\pm}11$	48 ± 6
$ZZ ightarrow \mu \mu u u$	44±5	104 ± 8	8.8±2.3
$WW ightarrow \ell \ell \ell u u$	$64{\pm}6$	$444{\pm}17$	22 ± 4
ττ	$11.0{\pm}2.8$	209 ± 12	12 ± 3
ZZorWW ightarrow au au u u	$7.6{\pm}2.2$	$98{\pm}8$	$3.8{\pm}1.6$
ZZ ightarrow au au u u u	$1.0{\pm}0.7$	41 ± 5	$6.0{\pm}1.7$
u Z, Z ightarrow au au	-	67±7	12.5 ± 2.8
$vvH, H \rightarrow anything$	$1.7{\pm}1.2$	25±5	-
ttbar	$0.07 {\pm} 0.07$	$0.14{\pm}0.10$	-
$e v W, W ightarrow \mu v$	-	-	-
e v W, W ightarrow au v	-	-	-
eeZ,Z ightarrow u u	-	-	-
$eeZ, Z \rightarrow vv$ or $evW, W \rightarrow ev$	-	-	-
Total SM	$524{\pm}18$	2503±39	210±12
$m(\tilde{\mu}, \tilde{\chi}_1^0) = (170, 30) \text{ GeV}$	775±11	82±4	7.4±1.1
$m(\tilde{\mu}, \tilde{\chi}_1^0) = (170, 100) \text{ GeV}$	1111 ± 14	1927 ± 18	$2.5{\pm}0.6$
$m(\tilde{\mu}, \tilde{\chi}_1^0) = (170, 165) \text{ GeV}$	-	$2310{\pm}20$	$2310{\pm}20$

10

360GeV 1ab smu Analysis: Zn map (5% sys.)

CEP

360GeV 1ab slepton search (5% sys.)

CEP

- Slepton search at CEPC@360GeV 1ab 5% sys. is investigated
- The potential to discover the production of combined left-handed and right-handed stau up to 168.5 GeV if exists, or up to 159 GeV for the production of pure lefthanded or right-handed stau; the discovery potential of direct smuon reaches up to 175 GeV
- Increase 82.5 (79) GeV for stau (smu) channels relative to LEP's, and 42.5 (58) GeV relative to CEPC@240GeV case, will be one motivation to raise CEPC@240GeV to 360GeV for new physics search

Thanks for your attention !

Backup

CEPC@240GeV 5.05ab with 5% sys.

(e) SR-lowDeltaM:M_{recoil}

<u>CEPC@240GeV</u> has the potential to discover the production of <u>combined</u> left-handed and right-handed stau up to <u>116</u> GeV if exists, or up to <u>113</u> GeV for the production of <u>pure left-handed or right-handed stau</u>; the discovery potential of direct <u>smuon</u> reaches up to <u>117</u> GeV with the same assumption

F. Lyu Slepton search at CEPC@360GeV

Chanllenge at CEPC@360GeV slepton Analysis:

- ✓ Have to generate all related CEPC@360GeV SM full simulation samples for the first time
- \checkmark Luminosity is decreased to 1ab ⁻¹, which is only 1/5 of the 240GeV's
- ✓ Slepton@360 GeV x-sections are much smaller. Such as 360GeV xsection for 175GeV smuon mass is one order of magnitude lower than 240GeV x-section for 115GeV
- ✓ The phase space of 360GeV case (slepton mass: 80-179 GeV) is 150% wider than that of 240GeV (slepton mass: 80-119), so the signal distribution is significantly broadened, which greatly introduce much more SM background, to make more hard to suppress BKG
- ✓ 360GeV introduces new ttbar BKG which is none for 240GeV

360GeV 1ab Analysis: Three key processes

Process I

Sensitivity values Execl created by several ten thousands of combinations of distinguishing variables Sorting & finding Better

Process II Zn plot ~200 Global comparing & making Balance

Process III N-1 plot ~100 Final check & best adjustment

CEPC@360GeV variables definition

- ition
- $|\Delta \phi(\ell^{\pm}, recoil)|$, the difference of azimuth between one lepton and the recoil system.
- $|\Delta \phi(\ell, \ell)|$, the difference of azimuth between two leptons.
- $\Delta R(\ell^{\pm}, recoil)$, the cone size between one lepton and the recoil system.
- $\Delta R(\ell, \ell)$, the cone size between two leptons.
- $E_{\ell^{\pm}}$, the energy of one lepton.
- $sum P_T$, the sum of the tranverse momentum of two leptons.
- $M_{\ell\ell}$, the invariant mass of two leptons.
- M_{recoil} , the invariant mass of the recoil system.
- Mextra: the invariant mass of all extra reconstructed particles with their energy above 0.5 GeV except the two muon tracks. Only used for smuon channel ttbar suppression

Sensitive reference Zn:

$$Zn = \left[2\left((s+b)\ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2}\ln\left[1 + \frac{\sigma_b^2s}{b(b+\sigma_b^2)}\right]\right)\right]^{1/2}$$
14-18/Aug./2024 F. Lyu Slepton search at CEPC@360GeV

Distinguishing variables in Signal Event Selection

Stau combined Left-hand and right-hand together

Up to 168.5GeV

Up to 175GeV