

Run: 281411

Higgs Rare and BSM Decays from 11:40:50 CEST ATLAS

Haifeng Li 李海峰

山东大学 (青岛) 2024年8月14日,高能物理大会,青岛

希格斯粒子只和有质量的基本粒子发生相互作用

Phys. Lett. B 812 (2021) 135980

H→µµ

<u>Phys. Lett. B 812 (2021) 135980</u>

最大的本底是Drell-Yan过程 BR(H→µµ)=0.02%

13 TeV 希格斯粒子的产生截面约为 55 pb。积分亮度 为140 fb⁻¹的数据中,有大约8百万个希格斯粒子产生。 其中1540个衰变到双缪子(如)

Haifeng Li (Shandong University)

H→µµ

Phys. Lett. B 812 (2021) 135980

Significance: 2.0σ (1.7 σ expected) Best fit: $\mu = 1.2 \pm 0.6$

Nature 607, 52-59 (2022)

Personal note: 12 years ago

<pre>* * @author Haifeng Li <haifeng.li@cern.ch> * @date Sep 03, 2012 * @usage Fitting macro for H -> mu mu background. */</haifeng.li@cern.ch></pre>	<pre>RooWorkspace* w = new RooWorkspace("w","w"); w->import(mll); // Working version for [105, 160] //w->factory("EXPR::bkgPDF('exp(a2*pow((mll-97), 0.2))', mll, a2[-1 // //w->factory("EXPR::bkgPDF('(a1*mll + a2*(2*mll*mll -1) + a3*(4*mll*</pre>
// ROOT	//
<pre>#include "TTree.h"</pre>	//w->factory("EXPR::bkgPDF('exp(a1*pow((mLl-100), 0.2) + (a2)*(2*pow
<pre>#include "TH1D.h"</pre>	// H->aamma aamma
#include "TRandom.h"	<pre>//w->factory("EXPR::bkgPDF('exp(a1*(mll-100)/100.+a2*(mll-100)*(mll-</pre>
#include	
#include	W((mll-100
A twelve-vear que	ry for the Higgs coupling
// RooFit	y for the fingge coupling
#indef	anaration formion
#Include LO SECOND G	
#include	, -1, 1, ., 1], pol
#include	2., 2], pol
<pre>#include "RooDataHist.h"</pre>	
#include "RooGaussian.h"	$//w$ ->factory("RooPolynomial::poly ba(mll, {poly c1[1, 0, 10], poly c
#include "RooCenericPdf h"	<pre>//w->factory("EXPR::exp_bg('exp(a2*pow((mll-97), a3))', mll, a2[-1, //w->factory("EXPR::exp_bg('exp(a2*pow((mll-97), a3))', mll, a2[-1,</pre>
#include "RooMinuit.h"	//w->factory(prop::bkgPur(exp_bg , poly_bg));
//Local	
<pre>#include "util/plotFit.h"</pre>	<pre>//w->factory("Chebychev::poly_bg(mll, {poly_c1[-7.44E-3, -1., 1], pol //w->factory("RooExponential::exp_bg(mll, a2_bg[-0.1,-0.5,-0.001])" //w->factory("SUM::bkgPDF(frac_bg[0.6, 0.01, 0.9]*exp_bg , poly_bg</pre>
using namespace RooFit ;	<pre>// Working version w->factory("Chebychev::poly_bg(mll, {poly_c1[-0.7969, -1., 1], poly_c w->factory("RooExponential::exp_bg(mll, a2_bg[-0.1584,-0.5,-0.001])" w->factory("SUM::bkgPDF(frac_bg[0.382, 0.01, 0.9]*exp_bg , poly_bg</pre>

Gavin Salam, the future of HEP

- ► LHC will reach 5 σ sensitivity for $H \rightarrow \mu\mu$ in the coming years (if it is SM-like), offering first proof that particles other than 3rd generation also get their mass from Yukawa mechanism
- ► that will be a crucial step on the way from 3rd generation Yukawas to 1st
- ► it deserves a big event with the world's press to announce it

ATLAS-CONF-2024-010

H→cc分析策略

ATLAS-CONF-2024-010

Similar to H→bb, VH events are used to suppress QCD background for H→cc (利用vector boson来触 发探测器)

Use V (W/Z) leptonic decays

- 0-lepton: $Z(\rightarrow \nu \nu) H(\rightarrow cc)$
- 1-lepton: $W(l \pm v)H(\rightarrow cc)$
- 2-lepton: $Z(I+I-)H(\rightarrow cc)$

Charm-jet tagging: vary challenging

- The decay length of the D hadron will be smaller than the decay length of B hadron
- Use Deep Neural Networks to combine different discriminate variables for c-jet tagging

Haifeng Li (Shandong University)

010

– etc.

Halleng LI (Shanuong Oniversity)

BDT_{VH} outpu

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

H→cc

ATLAS-CONF-2024-010

Expected upper limit on signal strength: 31

新结果

Expected upper limit on signal strength: 10 Will need 14000 fb⁻¹ to reach SM sensitivity

Phys. Lett. B 809 (2020) 135754

Phys. Rev. Lett. 132, 021803 (2024)

 $H \rightarrow Z\gamma$

arXiv:2005.05382

Phys. Lett. B 809 (2020) 135754

- Higgs boson can not couple to photon directly.
 H→Zγ through loop
- Main background: nonresonant production of Zγ.
 A smaller contribution from Z+jets
- Fit to m_{Zγ} spectra. Signal modeling is using MC template. Background modelling is using analytic functions

Br(H \rightarrow Z γ): ~1.5 \times 10⁻³

The observed (expected) significance: 2.2σ (1.2 σ)

Event display of a candidate $H \rightarrow Z\gamma$ event with the Z boson decaying e⁺e⁻

光子

(converted)

Run: 348885 Event: 93460963 2018-04-25 14:22:38 CEST

龟子

电子

$H \rightarrow Z\gamma$: ATLAS+CMS combined

arXiv:2309.03501

Phys. Rev. Lett. 132, 021803 (2024)

CMS observed (expected) significance is 2.7σ (1.2σ) JHEP 05 (2023) 233

Observed (SM expected) significance: 3.4 σ (1.6 σ) Evidence for H \rightarrow Z γ at the LHC

H→ee and lepton flavor violation decays

Phys. Lett. B 801 (2020) 135148

JHEP 07 (2023) 166

$H \rightarrow ee \text{ and } H \rightarrow e\mu$

arXiv:1909.10235

Phys. Lett. B 801 (2020) 135148

Observed (expected) upper limit at the 95% confidence level on the branching fraction Br(H \rightarrow ee) is $3.6 \times 10^{-4}(3.5 \times 10^{-4})$ and on Br(H \rightarrow eµ) is 6.1×10^{-5} (5.8×10^{-5})

$H \rightarrow et and H \rightarrow \mu t$

arXiv:2302.05225

JHEP 07 (2023) 166

Probe lepton flavor violation (LFV) decays of the Higgs boson

The observed (expected) upper limits set on the branching ratios at 95% confidence level, $B(H \rightarrow e\tau) < 0.20\%$ (0.12%) and $B(H \rightarrow \mu\tau) < 0.18\%$ (0.09%)

Haifeng Li (Shandong University)

18

Eur. Phys. J. C 83 (2023) 781

$H \rightarrow J/\psi /\psi 2S + \gamma$

arXiv:2208.03122

Upper limits on the branching fractions of the Higgs boson decays into $J/\psi\gamma$, $\psi(2S)\gamma$ are found to be 2.0×10^{-4} , 10.5×10^{-4}

20

总结

- H→μμ search with full run2 data by ATLAS.
 Observed significance: 2σ (1.7σ expected). Bestfit combined signal strength: μ = 1.2 ±0.6
- First evidence of H→Zγ from ATLAS&CMS. Observed result is 1.9σ away from the SM Higgs prediction
- ATLAS VH(→cc) measurement has been improved significantly. Hard to reach to SM sensitivity but will provide smaller confidence interval for charm-Higgs Yukawa coupling

第十届中国LHC物理会议 (CLHCP2024) 将由山 东大学承办 会议日期: 2024年11月14日至11月17日 会议地点:山东省青岛市鳌山湾

会议网址: <u>https://indico.ihep.ac.cn/event/22941/</u>

Peter Higgs (29 May 1929 – 8 April 2024)

ATLAS H→ $Z\gamma$: 不同category的数据

Haifeng Li (Shandong University)

H→er and H→µr: 本底估计方法

Symmetry method: Data-driven method where the main backgrounds in one channel are estimated using the data yields in the other channel [Phys. Rev. D 90, 015025 (2014)]

H→J/ψ /ψ2S + γ: 本底

- Exclusive background: the first is an exclusive contribution originating from μ+μ-γ events produced via the Drell– Yan process, where a highly energetic photon typically arises from final-state radiation
- Inclusive background: the second, which is the dominant background, is an inclusive contribution mostly from multijet and γ+jet events involving dimuon or Q production

