

Tsung-Dao Lee Institute

Combination of ATLAS searches for Higgs boson decays into a photon and a massless dark photon

中国物理学会高能物理分会第十四届全国粒子物理学术会议

Khanh N. Vu

Qingdao, August 15th 2024

Outline

- Introduction
- 2. Overview of input $H \rightarrow \gamma \gamma_d$ analyses
- 3. Statistical combination
- 4. Interpretation in Dark Photon Minimal Simplified Model

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Combination of searches for Higgs boson decays into a photon and a massless dark photon using *p p* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

A combination of searches for Higgs boson decays into a visible photon and a massless dark photon $(H \rightarrow \gamma \gamma_d)$ is presented using 139 fb⁻¹ of proton-proton collision data at a centre-of-mass energy of $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The observed (expected) 95% confidence level upper limit on the Standard Model Higgs boson decay branching ratio is determined to be $\mathcal{B}(H \to \gamma \gamma_d) < 1.3 \% (1.5) \%$. The search is also sensitive to higher-mass Higgs bosons decaying into the same final state. The observed (expected) 95% confidence level limit on the cross-section times branching ratio ranges from 16 fb (26 fb) for $m_H = 400$ GeV to 1.0 fb (1.5 fb) for $m_H = 3$ TeV. Results are also interpreted in the context of a minimal simplified model.

arXiv:2406.01656 accepted by JHEP

Introduction

- to Higgs. One attractive candidate is undetectable, massless dark photon (γ_d).
 - Force carrier of extra $U(1)_{d}$ gauge symmetry of dark sector. \bigcirc
 - igodol
 - Enhancing light DM annihilation rate, making asymmetric DM scenarios phenomenologically viable. $oldsymbol{O}$
- Potential approach is search for $H \rightarrow \gamma \gamma_d$ in resonant $\gamma + E_T^{\text{miss}}$ signatures via three Higgs production modes

ggF process

• Undetected Higgs decay $\mathscr{B}_{u} < \mathscr{O}(10\%)$ from <u>ATLAS</u> and <u>CMS</u> motivates searches for elusive BSM dark sector particles coupled

Introducing dark matter self-interactions for solving small-scale structure formation problem and PAMELA-Fermi-AMS2 anomaly.

ZH process

VBF process

Introduction

• Both ATLAS and CMS published various results for $H \rightarrow \gamma \gamma_d$ searches in distinct final states using LHC full Run 2 data:

	$\gamma + E_{T}^{miss}$ (ggF channel)
ATLAS	reinterpretation of mono- γ
CMS	

 $H_{125} \rightarrow \gamma \gamma_{\rm d}$

	ZH channel	VBF channel	Combined
ATLAS	2.3 (2.8) %	1.8 (1.7) %	This analysis
CMS	4.6 (3.6) %	3.5 (2.8) %	2.9 (2.1) %

95% CL limit on BR

* ATLAS provided competitive and complementary results, strong motivation for stat. combination to bring the best LHC constraint on $H_{125} \rightarrow \gamma \gamma_d$ and broadest search in terms of BSM H mass (400 - 3000 GeV).

"Process" refers to production mode $\stackrel{\frown}{\asymp}$ "Channel" refers to selection topology $\stackrel{\frown}{\sim}$

$H_{\rm BSM} \rightarrow \gamma \gamma_{\rm d}$

	VBF channel	ggF channel	Combined
ATLAS	Up to 2 TeV	Up to 3 TeV	This analys
CMS	Up to 1 TeV		

Mass range probed for *H*

Input overview VBF channel EPJC 82 (2022) 105

- **Topology:**
 - 1 photon, 2 or 3 VBF jets, $E_{\rm T}^{miss}$
 - Lepton (e, μ) veto
- Background estimation
 - $W(\rightarrow \ell \nu)\gamma + \text{jets}, Z(\rightarrow \nu \nu)\gamma + \text{jets},$ and *e*-fake γ from control regions (CR).
 - jet-fake γ from data-driven.
- Fit to data on m_{j_1,j_2} , $m_T(\gamma, E_T^{\text{miss}})$ bins in SR and 4 CRs.

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] Jets

Leptons

VBF	ZH	ggF
$E_{\mathrm{T}}^{\mathrm{miss}}$	Lepton(s)	Photon
$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
> 150	> 60	> 200
2 or 3, $m_{j_1 j_2} > 250 \text{ GeV}$, $ \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$		
$= 0 (e, \mu)$	= 2, SFOC	$=0~(e,\mu,\tau)$
	$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

Input overview VBF channel EPJC 82 (2022) 105

- Topology:
 - 1 photon, 2 or 3 VBF jets, $E_{\rm T}^{miss}$
 - Lepton (e, μ) veto
- Background estimation
 - $W(\rightarrow \ell \nu)\gamma + \text{jets}, Z(\rightarrow \nu \nu)\gamma + \text{jets},$ and *e*-fake γ from control regions (CR).
 - jet-fake γ from data-driven.
- ✤ Fit to data on $m_{j_1j_2}$, $m_T(\gamma, E_T^{miss})$ bins in SR and 4 CRs.

Channels

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] Jets

Leptons

 $[qd] (\overset{P}{\wedge} \overset{H}{+} H) = 10^{-1}$ $\overset{H}{+} 10^{-1}$ $\overset{H}{+} 10^{-2}$

10⁻³

VBF	ZH	ggF
$E_{\rm T}^{\rm miss} = 1, C_{\gamma} > 0.4$ $\in (15, \max(110, 0.733 \times m_{\rm T}))$ > 150 $2 \text{ or } 3, m_{j_1 j_2} > 250 \text{ GeV}, \Delta \eta_{j_1 j_2} > 3$ $\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$ = 0 (a, w)	Lepton(s) = 1 > 25 > 60 ≤ 2	Photon ≥ 1 > 150 > 200 ≤ 1
$-0(e,\mu)$	$m_{\ell\ell} \in (76, 116) \text{ GeV}$	$-0(e, \mu, \tau)$
$ Observed$ $ Expected$ $ Expected \pm 1\sigma$ $Expected \pm 2\sigma$ $\sigma^{VBF} \text{ with } B(H \rightarrow \gamma \gamma_{d}) = 0.05$	ATLAS S = 13 TeV, 139 fb ⁻¹ imits at 95% CL /BF Higgs couplings	
$m_{\gamma_{\rm d}} = 0 {\rm GeV}$		
10 ²	$10^3 m_H$	[GeV]

For this combination,

ggF process contribution included for BSM Higgs decay search.

• Extend *H* mass to 3 TeV.

Input overview ZH channel JHEP 07 (2023) 133

Channels

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] Jets

Leptons

- Topology
 - 1 photon, no more than 2 jets, $E_{\rm T}^{miss}$ $oldsymbol{O}$
 - 2 same-flavour, oppositely charged (SFOC) leptons \bigcirc within Z mass window
- BDT applied to enhance signal-bkg separation.
- Bkg estimation
 - Irreducible $VV\gamma$ from a dedicated CR.
 - Major $Z\gamma$ + jets, Z + jets and e-fake γ from data-driven
- Fit to data performed including SR (binned by BDT) and $VV\gamma$ CR.

ZH	ggF
Lepton(s)	Photon
= 1	≥ 1
> 25	> 150
> 60	> 200
≤ 2	≤ 1
= 2, SFOC	$= 0 \; (e, \mu, \tau)$
$m_{\ell\ell} \in (76, 116) \text{ GeV}$	
	ZH Lepton(s) $= 1$ > 25 > 60 ≤ 2 $= 2, SFOC$ $m_{\ell\ell} \in (76, 116) \text{ GeV}$

No significant deviation from SM prediction.

Input overview ZH channel JHEP 07 (2023) 133

Channels

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV] Jets

Leptons

- Topology
 - 1 photon, no more than 2 jets, $E_{\rm T}^{miss}$
 - 2 same-flavour, oppositely charged (SFOC) leptons within Z mass window
- BDT applied to enhance signal-bkg separation.
- Bkg estimation
 - Irreducible $VV\gamma$ from a dedicated CR.
 - Major $Z\gamma$ + jets, Z + jets and e-fake γ from data-driven
- Fit to data performed including SR (binned by BDT) and $VV\gamma$ CR.

VBF	ZH	ggF
$E_{\rm T}^{\rm miss}$	Lepton(s)	Photon
$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
> 150	> 60	> 200
2 or 3, $m_{j_1 j_2} > 250 \text{ GeV}$, $ \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$		
$= 0 (e, \mu)$	= 2, SFOC	$= 0 \; (e, \mu, \tau)$
	$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

Channels Input overview ggF channel Jets 0000

g

g

QOOL

Trigger Photons $E_{\rm T}^{\gamma}$ [GeV] $E_{\rm T}^{\rm miss}$ [GeV]

Leptons

Events

**	Topology		1(
	$\Delta t = 0 + 1 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 0 +$		1(
	• At least 1 photon, max 1 jet, large $E_{\rm T}^{\rm max}$		1(
	• Lepton (e, μ, τ_{had}) veto		1(
			1(
**	Background estimation		1
	• True photon bkgs: $Z(\rightarrow \nu\nu)\gamma$, $W(\rightarrow \ell\nu)\gamma$ and $Z(\rightarrow \ell\ell)\gamma$ from dedicated CRs.		10 10 ⁻
	• <i>e</i> -fake γ and jet-fake γ from data-driven.	kg	1
		a / B	1
*	Fit to data performed including all SR (binned by $E_{\rm T}^{miss}$) and CRs.	Date	0

Including both VBF and ggF processes.

Input overview ggF channel

Channels

Trigger

Photons

Leptons

BR [pb]

95% CL limit on

10⁻¹

Jets

 $E_{\rm T}^{\gamma}$ [GeV]

 $E_{\rm T}^{\rm miss}$ [GeV]

Topology

• At least 1 photon, max 1 jet , large $E_{\rm T}^{miss}$

- Lepton (e, μ, τ_{had}) veto
- Background estimation
 - True photon bkgs: $Z(\rightarrow \nu\nu)\gamma$, $W(\rightarrow \ell\nu)\gamma$ and $Z(\rightarrow \ell \ell)\gamma$ from dedicated CRs.
 - *e*-fake γ and jet-fake γ from data-driven.
- Fit to data performed including all SR (binned by E_{T}^{miss}) and CRs.
 - Including both VBF and ggF processes.

VBF	ZH	ggF
$E_{\rm T}^{\rm miss}$	Lepton(s)	Photon
$= 1, C_{\gamma} > 0.4$	= 1	≥ 1
$\in (15, \max(110, 0.733 \times m_{\rm T}))$	> 25	> 150
> 150	> 60	> 200
2 or 3, $m_{j_1 j_2} > 250 \text{ GeV}$, $ \Delta \eta_{j_1 j_2} > 3$	≤ 2	≤ 1
$\eta_{j_1} \cdot \eta_{j_2} < 0, \Delta \phi_{j_1 j_2} < 2, C_{j_3} < 0.7$		
$= 0 (e, \mu)$	= 2, SFOC	$=0(e,\mu,\tau)$
	$m_{\ell\ell} \in (76, 116) \text{ GeV}$	

Stat. combination Systematic uncertainty correlation

Uncertainties from luminosity, pile-up modelling are correlated.

Experimental uncertainties: correlated where appropriate, exceptions are:

- \bigcirc
- Uncertainties **heavily constrained or pulled** in original input analyses.

Background modelling uncertainties

Incorrelated since bkg composition and phase space are different.

Signal modelling uncertainties

Stemming from choice of parton distribution functions and QCD calculations; minor impact on final results; uncorrelated.

Uncertainties related to same objects but implemented with different schemes among input channels (e.g Jet-Energy-Resolution).

Stat. combination -- SM Higgs

♦ VBF-ZH combination set strongest limit on $\mathscr{B}(H_{125} \rightarrow \gamma \gamma_d)$ at LHC to date.

improved by 29% wrt VBF channel.

Uncertainty source	$\Delta \mathcal{B}_{\text{group}} / \Delta \mathcal{B}_{\text{total}} [\%]$
Theory uncertainties	49
Signal modelling	2.2
Background modelling	47
Experimental uncertainties	63
Luminosity, pile-up	< 0.1
Jets, $E_{\rm T}^{\rm miss}$	40
Electrons, muons	11
Fake background	35
MC statistical uncertainty	36
Systematic uncertainties	75
Statistical uncertainty	66
Total uncertainty	100

- Comparable impacts from Syst. and Stat. uncertainties.
- ♦ Leading syst. uncertainties from bkg modelling, Jets, E_{T}^{miss} , Fake bkg and MC stat.

Stat. combination -- BSM Higgs

VBF-ggF combination set most comprehensive constraints on $\sigma_{ggF+VBF} \times \mathscr{B}(H_{BSM} \to \gamma \gamma_d)$ for H mass up to 3 TeV.

• improved by 33% wrt ggF channel at $m_H = 1.5$ TeV.

Uncertainty source	$\Delta \mathcal{B}_{\text{group}} / \Delta \mathcal{B}_{\text{total}}$ [%]				
m_H [GeV]	400	800	1000	2000	3000
Theory uncertainties	30	27	28	40	35
Signal modelling	2.2	4.6	5.2	6.9	2.0
Background modelling	30	27	27	38	34
Experimental uncertainties	64	51	45	37	41
Luminosity, pile-up	4.6	2.6	2.9	2.8	2.3
Jets, $E_{\rm T}^{\rm miss}$	22	12	11	13	14
Electrons, muons	20	23	18	13	14
Fake background	52	41	35	25	29
MC statistical uncertainty	20	17	19	19	23
Statistical uncertainty	75	84	87	85	86
Systematic uncertainties	67	55	49	53	52
Total uncertainty	100	100	100	100	100

- Stat. uncertainty dominant at higher H masses.
- Leading syst. uncertainties from fake-bkg estimate and bkg modelling. Others share ~20% impact each.

Physics interpretation

- ♦ VBF-ZH combined limit on $\mathscr{B}(H_{125} \rightarrow \gamma \gamma_d)$ interpreted in a *Minimal Simplified Model* [1405.5196]
 - Generic Lagrangian: $\mathcal{L} \sim \mu \cdot H^{\dagger}S_{L}S_{R} + h.c. \xrightarrow{\text{EWSB}} \mathcal{L}_{S}^{0} = \partial_{\mu}\hat{S}^{\dagger}\partial^{\mu}\hat{S} \hat{S}^{\dagger}M_{S}^{2}\hat{S}$
 - μ mass parameter; S_L $SU(2)_L$ doublet; S_R $SU(2)_L$ singlet

* BR of $H \rightarrow \gamma \gamma_d$ / $\gamma_d \gamma_d$ / $\gamma \gamma$ can be expressed as functions of $U(1)_d$ fine-structure-constant α_d and mixing parameter ξ

$$BR_{\gamma\gamma_{D}} = BR_{\gamma\gamma}^{SM} \frac{r_{\gamma\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}} BR_{\gamma\gamma}^{SM}}$$
$$BR_{\gamma_{D}\gamma_{D}} = BR_{\gamma\gamma}^{SM} \frac{r_{\gamma_{D}\gamma_{D}}}{1 + r_{\gamma_{D}\gamma_{D}} BR_{\gamma\gamma}^{SM}}$$
$$BR_{\gamma\gamma} = BR_{\gamma\gamma}^{SM} \frac{(1 + \chi\sqrt{r_{\gamma\gamma}})^{2}}{1 + r_{\gamma_{D}\gamma_{D}} BR_{\gamma\gamma}^{SM}}$$

$$r_{\gamma\gamma_{\rm D}} = 2X^2 \left(\frac{\alpha_D}{\alpha}\right)$$
$$r_{\gamma_{\rm D}\gamma_{\rm D}} = X^2 \left(\frac{\alpha_D}{\alpha}\right)^2$$
$$r_{\gamma\gamma} = X^2$$
$$X \equiv \frac{\xi^2}{3F(1-\xi^2)}$$

$$\xi = \frac{\Delta}{\bar{m}^2}$$

Physics interpretation

 $\chi = +1$: scenario with constructive interference from messenger sector in $H_{125} \rightarrow \gamma \gamma$

$$H \rightarrow \gamma \gamma_{d}$$
 Observed 95% CL

VBF-ZH combination

 $H \rightarrow inv$ Observed 95% CL

PLB 842 (2023) 137963

 $H \rightarrow \gamma \gamma$ ATLAS measurement $BR(H_{125} \rightarrow \gamma \gamma) = 0.247^{+0.022}_{-0.020}\%$ Nature 607 (2022) 52

 $H \rightarrow \gamma \gamma$ SM prediction $\mathsf{BR}(H_{125}{\rightarrow}\gamma\gamma)=0.227\%$ arXiv:1610.07922

BR limits and measurements from this combination, $H \rightarrow inv$ or $H \rightarrow \gamma\gamma$ can be translated into constraints in (α_d , ξ).

- * $\xi \simeq 0.7$ at $\alpha_{\rm d} = 1$ excluded by $\mathscr{B}(H_{125} \rightarrow \text{inv})$ limit interpreted in terms of $H_{125} \rightarrow \gamma_d \gamma_d$ signal.
- $H_{125} \rightarrow \gamma \gamma_d$ combination provides additional sensitivity in low- α_d region, which is disfavoured by ATLAS $\mathscr{B}(H_{125} \rightarrow \gamma \gamma)$ measurement.

Conclusion

- Combined search for $H \rightarrow \gamma \gamma_d$ has been performed:
 - SM Higgs: VBF-ZH combination sets the most stringent limits on $\mathscr{B}(H_{125} \to \gamma \gamma_d)$ at LHC to date.
 - mass up to 3 TeV.
- Simplified Model with a generic messenger sector.

BSM Higgs: VBF-ggF combination provides most comprehensive constraint on $\sigma_{VBF+ggF} \times \mathscr{B}(H_{125} \rightarrow \gamma \gamma_d)$ for Higgs

First physics interpretation of the $H_{125} \rightarrow \gamma \gamma_d$, $H_{125} \rightarrow inv$ and $H_{125} \rightarrow \gamma \gamma$ results in the Dark Photon Minimal

BACKUP

Auxiliary

Auxiliary

<i>m</i> [GeV]	$\begin{vmatrix} 200 \le E_{\rm T}^{\rm miss} \\ \sigma\sigma F[\%] \end{vmatrix}$	$^{\rm s}$ < 250 GeV VBF [%]	$\begin{vmatrix} 250 \le E_{\rm T}^{\rm miss} \\ \sigma\sigma E \left[\%\right]$	s < 300 GeV VBF [%]	$\begin{vmatrix} 350 \le E_{\rm T}^{\rm mis} \\ \sigma\sigma F[\%] \end{vmatrix}$	$^{\rm s}$ < 375 GeV VBF [%]	$E_{\rm T}^{\rm miss} \ge$	375 GeV VBF [%]
		V DI [/0]		• DI [/0]		• DI [/0]		
400	8.15	4.30	0.35	0.49	0.04	0.05	< 0.01	< 0.01
600	9.05	4.95	18.9	9.10	7.74	5.44	0.35	0.53
800	3.21	1.96	5.33	3.27	15.4	9.39	15.6	10.5
1000	1.63	1.24	2.50	1.72	5.92	4.01	29.4	21.2
1500	0.50	0.38	0.73	0.69	1.65	1.33	33.3	30.0
2000	0.22	0.21	0.35	0.33	0.67	0.69	32.7	34.3
2500	0.10	0.09	0.16	0.18	0.35	0.41	29.6	38.0
3000	0.04	0.08	0.08	0.11	0.19	0.29	28.9	39.6

Stat. combination

The results of the combination presented in this paper are obtained from a likelihood function $L(\mu, \vec{\theta})$, where μ denotes the parameter of interest (POI) of the model, and $\vec{\theta}$ constitutes a set of nuisance parameters, encoding the systematic uncertainty contributions and background normalisation factors that are constrained by CRs in data. The final likelihood function $L(\mu, \vec{\theta})$ is the product of the likelihoods from individual channels within the combination, which are themselves products of likelihoods computed from the final observables in various categories in a single analysis. To derive upper limits on the POI, the profile-likelihood-ratio test statistic is used with the CL_s method [74] following the asymptotic formulae [75].

Orthogonality check

- Treated as statistically independent.

Full run-2 data

