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Local correlations

straightforward (see also Secs. II.D and VI for results specific
to the multipartite case).

A. General definitions

As in the Introduction, we consider two distant observers,
Alice and Bob, performing measurements on a shared
physical system, for instance, a pair of entangled particles.
Each observer has a choice of m different measurements to
perform on his system. Each measurement can yield Δ
possible outcomes. Abstractly we describe the situation by
saying that Alice and Bob have access to a “black box.” Each
party locally selects an input (a measurement setting) and the
box produces an output (a measurement outcome). We refer to
this scenario as a Bell scenario.
We label the inputs of Alice and Bob x; y ∈ f1; :::::; mg and

their outputs a; b ∈ f1; :::::;Δg, respectively. The labels
attributed to the inputs and outputs are purely conventional,
and the results presented here are independent of this choice.
Some parts of this review might use other notations for
convenience. In particular, when the outputs are binary, it
is customary to write a; b ∈ f−1; 1g or a; b ∈ f0; 1g.
Let pðabjxyÞ denote the joint probability to obtain the

output pair ða; bÞ given the input pair ðx; yÞ. A Bell scenario is
then completely characterized by Δ2m2 such joint probabil-
ities, one for each possible pair of inputs and outputs.
Following the terminology introduced by Tsirelson (1993),
we refer to the set p ¼ fpðabjxyÞg of all these probabilities as
a behavior. Informally, we simply refer to them as the
correlations characterizing the black box shared by Alice
and Bob. A behavior can be viewed as a point p ∈ RΔ2m2

belonging to the probability space P ⊂ RΔ2m2
defined by

the positivity constraints pðabjxyÞ ≥ 0 and the normalization
constraints

PΔ
a;b¼1 pðabjxyÞ ¼ 1. Due to the normalization

constraints P is a subspace of RΔ2m2
of dimension

dimP ¼ ðΔ2 − 1Þm2.
The existence of a given physical model behind the

correlations obtained in a Bell scenario translates into addi-
tional constraints on the behaviors p. Three main types of
correlations can be distinguished.

1. No-signaling correlations

The first natural limitation on behaviors p are the no-
signaling constraints (Cirel'son, 1980; Popescu and Rohrlich,
1994), formally expressed as

XΔ

b¼1

pðabjxyÞ ¼
XΔ

b¼1

pðabjxy0Þ; for all a; x; y; y0;

XΔ

a¼1

pðabjxyÞ ¼
XΔ

a¼1

pðabjx0yÞ; for all b; y; x; x0: (7)

These constraints have a clear physical interpretation: they
imply that the local marginal probabilities of Alice pðajxÞ≡
pðajxyÞ ¼

PΔ
b¼1 pðabjxyÞ are independent of Bob's meas-

urement setting y, and thus Bob cannot signal to Alice by his
choice of input (and the other way around). In particular, if
Alice and Bob are spacelike separated, the no-signaling
constraints (7) guarantee that Alice and Bob cannot use their

black box for instantaneous signaling, preventing a direct
conflict with relativity.
Let NS denote the set of behaviors satisfying the no-

signaling constraints (7). It is not difficult to see thatNS is an
affine subspace of RΔ2m2

of dimension

dimNS ¼ 2ðΔ − 1Þmþ ðΔ − 1Þ2m2 ¼ ∶t; (8)

see, e.g., Pironio (2005). One can thus parametrize points in
NS using t numbers rather than the Δ2m2 numbers [or ðΔ2 −
1Þm2 taking into account normalization] necessary to specify
a point in the general probability space P. A possible
parametrization is given by the set of probabilities
fpðajxÞ; pðbjyÞ; pðabjxyÞg, where a; b ¼ 1;…;Δ − 1 and
x; y ¼ 1;…; m. There are indeed t such probabilities and
their knowledge is sufficient to reconstruct the full list of
pðabjxyÞ for any a, b, x, and y. Seen as a subset of Rt, the
no-signaling set is thus uniquely constrained by the
Δ2m2 positivity constraints pðabjxyÞ ≥ 0 (which have to
be reexpressed in terms of the chosen parametrization).
In the case of binary outcome (Δ ¼ 2), an alternative

parametrization is provided by the 2mþm2 correlators
fhAxi; hByi; hAxByig, where

hAxi ¼
X

a∈f%1g
apðajxÞ; hByi ¼

X

b∈f%1g
bpðbjyÞ; (9)

hAxByi ¼
X

a;b∈f%1g
abpðabjxyÞ; (10)

and we assumed a; b ∈ f−1; 1g. Joint probabilities and
correlators are related as pðabjxyÞ ¼ ½1þ ahAxiþ bhByiþ
abhAxByi'=4. Thus an arbitrary no-signaling behavior must
satisfy 1þ ahAxiþ bhByiþ abhAxByi ≥ 0 for all a, b, x, and
y. See Bancal, Gisin, and Pironio (2010) for a more general
definition of correlators for the Δ > 2 case.
A particular subset of interest of NS in the Δ ¼ 2 case is

the one for which hAxi ¼ hByi ¼ 0. We refer to this set as the
correlation space C. In terms of the m2 correlators (10), an
arbitrary point in C is constrained only by the inequalities
−1 ≤ hAxByi ≤ 1. Bell inequalities that involve only the
quantities hAxByi, such as the CHSH inequality, are called
correlation inequalities.

2. Local correlations

A more restrictive constraint than the no-signaling con-
dition is the locality condition discussed in the Introduction.
Formally, the set L of local behaviors is defined by the
elements of P that can be written in the form

pðabjxyÞ ¼
Z

Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (11)

where the (hidden) variables λ are arbitrary variables taking
value in a space Λ and distributed according to the probability
density qðλÞ and where pðajx; λÞ and pðbjy; λÞ are local
probability response functions for Alice and Bob, respectively.
Operationally, one can also think about λ as shared random-
ness; that is, some shared classical random bits, where Alice
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Local correlations

straightforward (see also Secs. II.D and VI for results specific
to the multipartite case).

A. General definitions

As in the Introduction, we consider two distant observers,
Alice and Bob, performing measurements on a shared
physical system, for instance, a pair of entangled particles.
Each observer has a choice of m different measurements to
perform on his system. Each measurement can yield Δ
possible outcomes. Abstractly we describe the situation by
saying that Alice and Bob have access to a “black box.” Each
party locally selects an input (a measurement setting) and the
box produces an output (a measurement outcome). We refer to
this scenario as a Bell scenario.
We label the inputs of Alice and Bob x; y ∈ f1; :::::; mg and

their outputs a; b ∈ f1; :::::;Δg, respectively. The labels
attributed to the inputs and outputs are purely conventional,
and the results presented here are independent of this choice.
Some parts of this review might use other notations for
convenience. In particular, when the outputs are binary, it
is customary to write a; b ∈ f−1; 1g or a; b ∈ f0; 1g.
Let pðabjxyÞ denote the joint probability to obtain the

output pair ða; bÞ given the input pair ðx; yÞ. A Bell scenario is
then completely characterized by Δ2m2 such joint probabil-
ities, one for each possible pair of inputs and outputs.
Following the terminology introduced by Tsirelson (1993),
we refer to the set p ¼ fpðabjxyÞg of all these probabilities as
a behavior. Informally, we simply refer to them as the
correlations characterizing the black box shared by Alice
and Bob. A behavior can be viewed as a point p ∈ RΔ2m2

belonging to the probability space P ⊂ RΔ2m2
defined by

the positivity constraints pðabjxyÞ ≥ 0 and the normalization
constraints

PΔ
a;b¼1 pðabjxyÞ ¼ 1. Due to the normalization

constraints P is a subspace of RΔ2m2
of dimension

dimP ¼ ðΔ2 − 1Þm2.
The existence of a given physical model behind the

correlations obtained in a Bell scenario translates into addi-
tional constraints on the behaviors p. Three main types of
correlations can be distinguished.

1. No-signaling correlations

The first natural limitation on behaviors p are the no-
signaling constraints (Cirel'son, 1980; Popescu and Rohrlich,
1994), formally expressed as

XΔ

b¼1

pðabjxyÞ ¼
XΔ

b¼1

pðabjxy0Þ; for all a; x; y; y0;

XΔ

a¼1

pðabjxyÞ ¼
XΔ

a¼1

pðabjx0yÞ; for all b; y; x; x0: (7)

These constraints have a clear physical interpretation: they
imply that the local marginal probabilities of Alice pðajxÞ≡
pðajxyÞ ¼

PΔ
b¼1 pðabjxyÞ are independent of Bob's meas-

urement setting y, and thus Bob cannot signal to Alice by his
choice of input (and the other way around). In particular, if
Alice and Bob are spacelike separated, the no-signaling
constraints (7) guarantee that Alice and Bob cannot use their

black box for instantaneous signaling, preventing a direct
conflict with relativity.
Let NS denote the set of behaviors satisfying the no-

signaling constraints (7). It is not difficult to see thatNS is an
affine subspace of RΔ2m2

of dimension

dimNS ¼ 2ðΔ − 1Þmþ ðΔ − 1Þ2m2 ¼ ∶t; (8)

see, e.g., Pironio (2005). One can thus parametrize points in
NS using t numbers rather than the Δ2m2 numbers [or ðΔ2 −
1Þm2 taking into account normalization] necessary to specify
a point in the general probability space P. A possible
parametrization is given by the set of probabilities
fpðajxÞ; pðbjyÞ; pðabjxyÞg, where a; b ¼ 1;…;Δ − 1 and
x; y ¼ 1;…; m. There are indeed t such probabilities and
their knowledge is sufficient to reconstruct the full list of
pðabjxyÞ for any a, b, x, and y. Seen as a subset of Rt, the
no-signaling set is thus uniquely constrained by the
Δ2m2 positivity constraints pðabjxyÞ ≥ 0 (which have to
be reexpressed in terms of the chosen parametrization).
In the case of binary outcome (Δ ¼ 2), an alternative

parametrization is provided by the 2mþm2 correlators
fhAxi; hByi; hAxByig, where

hAxi ¼
X

a∈f%1g
apðajxÞ; hByi ¼

X

b∈f%1g
bpðbjyÞ; (9)

hAxByi ¼
X

a;b∈f%1g
abpðabjxyÞ; (10)

and we assumed a; b ∈ f−1; 1g. Joint probabilities and
correlators are related as pðabjxyÞ ¼ ½1þ ahAxiþ bhByiþ
abhAxByi'=4. Thus an arbitrary no-signaling behavior must
satisfy 1þ ahAxiþ bhByiþ abhAxByi ≥ 0 for all a, b, x, and
y. See Bancal, Gisin, and Pironio (2010) for a more general
definition of correlators for the Δ > 2 case.
A particular subset of interest of NS in the Δ ¼ 2 case is

the one for which hAxi ¼ hByi ¼ 0. We refer to this set as the
correlation space C. In terms of the m2 correlators (10), an
arbitrary point in C is constrained only by the inequalities
−1 ≤ hAxByi ≤ 1. Bell inequalities that involve only the
quantities hAxByi, such as the CHSH inequality, are called
correlation inequalities.

2. Local correlations

A more restrictive constraint than the no-signaling con-
dition is the locality condition discussed in the Introduction.
Formally, the set L of local behaviors is defined by the
elements of P that can be written in the form

pðabjxyÞ ¼
Z

Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (11)

where the (hidden) variables λ are arbitrary variables taking
value in a space Λ and distributed according to the probability
density qðλÞ and where pðajx; λÞ and pðbjy; λÞ are local
probability response functions for Alice and Bob, respectively.
Operationally, one can also think about λ as shared random-
ness; that is, some shared classical random bits, where Alice
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Quantum correlations-I

will choose an outcome a depending on both her measurement
setting x and λ and similarly for Bob.
Whereas any local behavior satisfies the no-signaling

constraint, the converse does not hold. There exist no-signal-
ing behaviors which do not satisfy the locality conditions.
Hence the set of local correlations is strictly smaller than the
set of no-signaling correlations; that is, L ⊂ NS.
Correlations that cannot be written in the above form are

said to be nonlocal. Note that this can happen only if Δ ≥ 2
and m ≥ 2 (otherwise it is always possible to build a local
model for any behavior inP). In the following, we thus always
assume Δ ≥ 2, m ≥ 2.

3. Quantum correlations

Finally, we consider the set of behaviors achievable in
quantum mechanics. Formally, the set Q of quantum behav-
iors corresponds to the elements of P that can be written as

pðabjxyÞ ¼ tr ðρABMajx ⊗ MbjyÞ; (12)

where ρAB is a quantum state in a joint Hilbert space
HA ⊗ HB of arbitrary dimension, Majx are measurement
operators [positive operator valued measure (POVM)
elements] on HA characterizing Alice's measurements (thus
Majx ≥ 0 and

PΔ
a¼1 Majx ¼ 1), and similarly Mbjy are

operators on HB characterizing Bob's measurements.
Note that, without loss of generality, we can always assume

the state to be pure and the measurement operators to be
orthogonal projectors, if necessary by increasing the dimen-
sion of the Hilbert space. That is, we can equivalently write a
quantum behavior as

pðabjxyÞ ¼ hψ jMajx ⊗ Mbjyjψi; (13)

where MajxMa0 jx ¼ δaa0Majx,
P

aMajx ¼ 1A and similarly for
the operators Mbjy.
A different definition of quantum behaviors is also possible,

where instead of imposing a tensor product structure between
Alice's and Bob's systems, we merely require that their local
operators commute (Tsirelson, 1993). We call the correspond-
ing set Q0, i.e., a behavior p belongs to Q0 if

pðabjxyÞ ¼ hψ jMajxMbjyjψi; (14)

where jψi is a state in a Hilbert space H, and Majx and Mbjy
are orthogonal projectors on H defining proper measurements
and satisfying ½Majx;Mbjy% ¼ 0. The former definition (13) is
standard in nonrelativistic quantum theory, while the second
one (14) is natural in relativistic quantum field theory. Since
½Majx ⊗ 1B; 1A ⊗ Mbjy% ¼ 0 it is immediate that Q⊆Q0. It is
an open question, known as Tsirelson's problem, whether the
inclusion is strict, i.e., Q ≠ Q0 (Scholz and Werner, 2008;
Tsirelson, 1993; Junge et al., 2011; Fritz, 2012a). In the case
where the Hilbert spacesH,HA, andHB are finite, it is known
that Eqs. (13) and (14) coincide (Tsirelson, 1993; Doherty et
al., 2008; Navascues et al., 2011). It is also known that Q ¼
Q0 if Alice has a binary choice of inputs with two outputs
each, independently of Bob's number of inputs and outputs
(Navascues et al., 2011). More precisely, in this case any

element of Q0 can be approximated arbitrarily well by an
element of Q. For many applications and results, it does not
matter whether we consider the quantum sets Q or Q0. In the
following, we drop the distinction and use the notation Q to
refer to both sets, except when results are specific to only one
definition.
It can easily be shown that any local behavior admits a

description of Eq. (12) and thus belongs to Q (Pitowsky,
1986). Moreover, any quantum behavior satisfies the no-
signaling constraints. However, there are quantum correlations
that do not belong to the local set (this follows from the
violation of Bell inequalities) and, as we will see, there are no-
signaling correlations that do not belong to the quantum set
(Khalfin and Tsirelson, 1985; Rastall, 1985; Popescu and
Rohrlich, 1994). In general, we thus have the strict inclusions
L ⊂ Q ⊂ NS (see Fig. 2). Furthermore, it can be shown that
dimL ¼ dimQ ¼ dimNS ¼ t (Pironio, 2005), where t is
defined in Eq. (8).
In the following sections, we discuss the properties of L,Q,

andNS in more detail. In particular, we see how it is possible
to decide if a given behavior belongs or not to one of these
sets. We show how each set can be characterized in terms of
Bell-type inequalities and discuss how to compute bounds for
Bell-type expression for behaviors in L, Q, and NS.

B. Bell inequalities

The sets L, Q, and NS are closed, bounded, and convex.
That is, if p1 and p2 belong to one of these sets, then the
mixture μp1 þ ð1 − μÞp2 with 0 ≤ μ ≤ 1 also belongs to this
set. The convexity of Q can be established for instance by
following the argument in Pitowsky (1986). By the hyper-
plane separation theorem, it follows that for each behavior
p̂ ∈ Rt that does not belong to one of the sets K ¼ L, Q, or
NS there exists a hyperplane that separates this p̂ from the
corresponding set (see Fig. 2). That is, if p̂∉K, then there
exists an inequality of the form

s · p ¼
X

abxy

sabxypðabjxyÞ ≤ Sk (15)

FIG. 2 (color online). Sketch of the no-signaling (NS), quantum
(Q), and local (L) sets. Notice the strict inclusions L ⊂ Q ⊂ NS.
Moreover, NS and L are polytopes, i.e., they can be defined as
the convex combination of a finite number of extremal points.
The set Q is convex, but not a polytope. The hyperplanes
delimiting the set L correspond to Bell inequalities.
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No-signaling correlations

straightforward (see also Secs. II.D and VI for results specific
to the multipartite case).

A. General definitions

As in the Introduction, we consider two distant observers,
Alice and Bob, performing measurements on a shared
physical system, for instance, a pair of entangled particles.
Each observer has a choice of m different measurements to
perform on his system. Each measurement can yield Δ
possible outcomes. Abstractly we describe the situation by
saying that Alice and Bob have access to a “black box.” Each
party locally selects an input (a measurement setting) and the
box produces an output (a measurement outcome). We refer to
this scenario as a Bell scenario.
We label the inputs of Alice and Bob x; y ∈ f1; :::::; mg and

their outputs a; b ∈ f1; :::::;Δg, respectively. The labels
attributed to the inputs and outputs are purely conventional,
and the results presented here are independent of this choice.
Some parts of this review might use other notations for
convenience. In particular, when the outputs are binary, it
is customary to write a; b ∈ f−1; 1g or a; b ∈ f0; 1g.
Let pðabjxyÞ denote the joint probability to obtain the

output pair ða; bÞ given the input pair ðx; yÞ. A Bell scenario is
then completely characterized by Δ2m2 such joint probabil-
ities, one for each possible pair of inputs and outputs.
Following the terminology introduced by Tsirelson (1993),
we refer to the set p ¼ fpðabjxyÞg of all these probabilities as
a behavior. Informally, we simply refer to them as the
correlations characterizing the black box shared by Alice
and Bob. A behavior can be viewed as a point p ∈ RΔ2m2

belonging to the probability space P ⊂ RΔ2m2
defined by

the positivity constraints pðabjxyÞ ≥ 0 and the normalization
constraints

PΔ
a;b¼1 pðabjxyÞ ¼ 1. Due to the normalization

constraints P is a subspace of RΔ2m2
of dimension

dimP ¼ ðΔ2 − 1Þm2.
The existence of a given physical model behind the

correlations obtained in a Bell scenario translates into addi-
tional constraints on the behaviors p. Three main types of
correlations can be distinguished.

1. No-signaling correlations

The first natural limitation on behaviors p are the no-
signaling constraints (Cirel'son, 1980; Popescu and Rohrlich,
1994), formally expressed as

XΔ

b¼1

pðabjxyÞ ¼
XΔ

b¼1

pðabjxy0Þ; for all a; x; y; y0;

XΔ

a¼1

pðabjxyÞ ¼
XΔ

a¼1

pðabjx0yÞ; for all b; y; x; x0: (7)

These constraints have a clear physical interpretation: they
imply that the local marginal probabilities of Alice pðajxÞ≡
pðajxyÞ ¼

PΔ
b¼1 pðabjxyÞ are independent of Bob's meas-

urement setting y, and thus Bob cannot signal to Alice by his
choice of input (and the other way around). In particular, if
Alice and Bob are spacelike separated, the no-signaling
constraints (7) guarantee that Alice and Bob cannot use their

black box for instantaneous signaling, preventing a direct
conflict with relativity.
Let NS denote the set of behaviors satisfying the no-

signaling constraints (7). It is not difficult to see thatNS is an
affine subspace of RΔ2m2

of dimension

dimNS ¼ 2ðΔ − 1Þmþ ðΔ − 1Þ2m2 ¼ ∶t; (8)

see, e.g., Pironio (2005). One can thus parametrize points in
NS using t numbers rather than the Δ2m2 numbers [or ðΔ2 −
1Þm2 taking into account normalization] necessary to specify
a point in the general probability space P. A possible
parametrization is given by the set of probabilities
fpðajxÞ; pðbjyÞ; pðabjxyÞg, where a; b ¼ 1;…;Δ − 1 and
x; y ¼ 1;…; m. There are indeed t such probabilities and
their knowledge is sufficient to reconstruct the full list of
pðabjxyÞ for any a, b, x, and y. Seen as a subset of Rt, the
no-signaling set is thus uniquely constrained by the
Δ2m2 positivity constraints pðabjxyÞ ≥ 0 (which have to
be reexpressed in terms of the chosen parametrization).
In the case of binary outcome (Δ ¼ 2), an alternative

parametrization is provided by the 2mþm2 correlators
fhAxi; hByi; hAxByig, where

hAxi ¼
X

a∈f%1g
apðajxÞ; hByi ¼

X

b∈f%1g
bpðbjyÞ; (9)

hAxByi ¼
X

a;b∈f%1g
abpðabjxyÞ; (10)

and we assumed a; b ∈ f−1; 1g. Joint probabilities and
correlators are related as pðabjxyÞ ¼ ½1þ ahAxiþ bhByiþ
abhAxByi'=4. Thus an arbitrary no-signaling behavior must
satisfy 1þ ahAxiþ bhByiþ abhAxByi ≥ 0 for all a, b, x, and
y. See Bancal, Gisin, and Pironio (2010) for a more general
definition of correlators for the Δ > 2 case.
A particular subset of interest of NS in the Δ ¼ 2 case is

the one for which hAxi ¼ hByi ¼ 0. We refer to this set as the
correlation space C. In terms of the m2 correlators (10), an
arbitrary point in C is constrained only by the inequalities
−1 ≤ hAxByi ≤ 1. Bell inequalities that involve only the
quantities hAxByi, such as the CHSH inequality, are called
correlation inequalities.

2. Local correlations

A more restrictive constraint than the no-signaling con-
dition is the locality condition discussed in the Introduction.
Formally, the set L of local behaviors is defined by the
elements of P that can be written in the form

pðabjxyÞ ¼
Z

Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (11)

where the (hidden) variables λ are arbitrary variables taking
value in a space Λ and distributed according to the probability
density qðλÞ and where pðajx; λÞ and pðbjy; λÞ are local
probability response functions for Alice and Bob, respectively.
Operationally, one can also think about λ as shared random-
ness; that is, some shared classical random bits, where Alice
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The different correlations
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(Boris Semyonovich Cirelson, before 1983

Boris Semyonovich Tsirelson, after 1983)


(1950/05/04-2020/01/21)

A. Connes, “Classification of injective factors cases II1, II∞, IIIλ, λ≠1”, Ann. Math. 104 (1976) 73-155; 
B. Tsirelson, “Bell inequalities and operator algebras”, https://www.tau.ac.il/~tsirel/download/bellopalg.pdf; 
W. Slofstra, “The Set of Quantum Correlations is not Closed”, Forum of Mathematics, Pi. 2019;7:e1; 
Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen, “MIP*=RE”, arXiv:2001.04838[quant-ph]; 
Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen, “MIP*=RE”, Commun. ACM 64 (2021) 131. 

Tsirelson’s Problem
(Connes’ embedding problem, Kirchberg’s Conjecture)

Local 
correlations

Quantum 
correlations-I

Quantum 
correlations-II

No-signaling 
correlations⊂ ⊂ ⊂
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The different correlations

[the inequalities pðabjxyÞ ≥ 0] using the same polytope
algorithms that allow one to list the facets of L given its
vertices. The vertices of L, the local deterministic points dλ,
are clearly also vertices ofNS (since they cannot be written as
a convex combination of any other behavior). All other
vertices of NS are nonlocal.
The geometry of the no-signaling set and its relation to L is

particularly simple for the Δ ¼ 2, m ¼ 2 Bell scenario. In this
case, the no-signaling behaviors form an 8-dimensional sub-
space of the full probability space P. The local polytope
consists of 16 vertices, the local deterministic points, and 24
facets. Sixteen of these facets are positivity inequalities and
eight are different versions, up to relabeling of the inputs and
outputs, of the CHSH inequality. The no-signaling polytope,
on the other hand, consists of 16 facets, the positivity
inequalities, and 24 vertices. Sixteen of these vertices are
the local deterministic ones and eight are nonlocal vertices, all
equivalent up to relabeling of inputs and outputs to the
behavior

pðabjxyÞ ¼
!
1=2; if a⊕b ¼ xy;
0; otherwise;

(36)

which is usually referred to as a PR box. It is easily verified
that the PR box violates the CHSH inequality (4) up to the
value s · p ¼ 4 > 2, the algebraic maximum. In the language
of games, this means that the CHSH game can be won with
probability pCHSH

win ¼ 1. There exists a one-to-one correspon-
dence between each version of the PR box and of the CHSH

inequality, in the sense that each PR box violates only one of
the CHSH inequalities. The PR box was introduced by
Khalfin and Tsirelson (1985), Rastall (1985), and Popescu
and Rohrlich (1994). Since the maximal quantum violation of
the CHSH inequality is 2

ffiffiffi
2

p
, it provides an example of a no-

signaling behavior that is not quantum, implying that in
general Q ≠ NS. The relation between L, Q, and NS in
the Δ ¼ 2, m ¼ 2 case is represented in Fig. 4.
The complete list of all no-signaling vertices is also known

in the case of two inputs (m ¼ 2) and an arbitrary number of
outputs (Barrett, Linden et al., 2005) and in the case of two
outputs (Δ ¼ 2) and an arbitrary number of inputs (Jones and
Masanes, 2005; Barrett and Pironio, 2005). In both cases, the
corresponding nonlocal vertices can be seen as straightfor-
ward generalizations of the PR box.

D. Multipartite correlations

Although we focused for simplicity in the preceding
sections on Bell scenarios involving n ¼ 2 systems, most
of the above definitions and basic results extend straightfor-
wardly to the case of an arbitrary number n > 2 of systems.
For instance, in the tripartite case a behavior pðabcjxyzÞ is no
signaling when

X

c

pðabcjxyzÞ¼
X

c0
pðabc0jxyz0Þ ∀ a;b;x;y;z;z0 (37)

and similar relations obtained from permutations of the
parties; a behavior is local if it can be written as a convex
combination of a finite number of deterministic behaviors
dλðabcjxyzÞ; Bell inequalities correspond to faces of the
corresponding polytope, and so on. Next we discuss a few
notable results obtained in the multipartite case. Note that
many references cited in the previous sections also contain
results for more than two parties.
As in the bipartite case, one can consider Bell inequalities

that involve only full correlators in the case where all
measurements have binary outcomes. In the n ¼ 3 case, for
instance, such an inequality would involve only terms of the
form hAxByCzi ¼

P
a;b;c¼$1abcpðabcjxyzÞ, and similarly

for more parties. All correlation Bell inequalities with
m ¼ 2 inputs have been derived by Werner and Wolf
(2001b) and Zukowski and Brukner (2002) for an arbitrary
number n of parties. There are 22

n
such inequalities (with

redundancies under relabeling) which can be summarized in a
single, but nonlinear inequality. Notable inequalities that are
part of this family are the inequalities introduced by Mermin
(1990a) and further developed by Ardehali (1992) and
Belinskii and Klyshko (1993). In the case n ¼ 3, the
Mermin inequality takes the form

jhA1B2C2iþ hA2B1C2iþ hA2B2C1i − hA1B1C1ij ≤ 2: (38)

It is associated with the Greenberger-Horne-Zeilinger (GHZ)
paradox (see Sec. II.E) in the sense that correlations that
exhibit the GHZ paradox violate it up to the algebraic bound
of 4. Werner and Wolf (2001b) also investigated the structure
of the quantum region in the full correlation space. In
particular, it was shown that the quantum bound of all

FIG. 4 (color online). A two-dimensional section of the no-
signaling polytope in the CHSH scenario (m ¼ Δ ¼ 2). The
vertical axis represents the CHSH value S, while the horizontal
axis represents the value of a symmetry of the CHSH expression
S0 (where inputs have been relabeled). Local correlations satisfy
jSj ≤ 2 and jS0j ≤ 2. The PR box is the no-signaling behavior
achieving the maximum CHSH value S ¼ 4. Tsirelson's bound
corresponds to the point where S ¼ 2

ffiffiffi
2

p
, i.e., the maximum

CHSH value that a quantum behavior can achieve.

Brunner et al.: Bell nonlocality 433

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014

“factorized states” (with deterministic results of 
the observables)

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86 (2014) 419
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The Verification in EW scale
• The most popular topic:  production at the LHC. 

• Why?

tt̄
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• It is not easy, why?

The Verification at the EW scale
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        “Finally, we prove that the weak membership problem 
for the convex set of separable normalized bipartite density 
matrices is NP-HARD. ” 

——Leonid Gurvits

The Verification at the EW scale
“A quantitatively characterization of the degree of the entanglement 
between the subsystems of a system in a mixed state, is not unique! ”

L. Gurvits, “Classical Deterministic Complexity of Edmonds’ Problem and Quantum Entanglement”, 2003

ρAB =
N

∑
i=1

piρ(i)
A ⊗ ρ(i)

B , (
N

∑
i

pi = 1, pi > 0)?
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The Verification at the EW scale
• For  and  system, it is solved by Peres, and Horodeckis 1996 (Peres-Horodecki 

criterion, concurrence).
2 × 2 2 × 3

Ryszard Horodecki 
(1943/09/30-)

Paweł Horodecki 
(1971-)

Michał Horodecki 
(1973-)

Asher Peres 
(1934/01/30-2005/01/01) 

A. Peres, “Separability Criterion for Density Matrices”, Phys. Rev. Lett. 77 (1996) 1413;Michał Horodecki, Paweł Horodecki, 
Ryszard Horodecki, “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A 223 (1996) 1.
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The Verification at the EW scale

Ryszard Horodecki 
(1943/09/30-)

Paweł Horodecki 
(1971-)

Michał Horodecki 
(1973-)

Karol Horodecki 
(1981(?)-)

• For  and  system, it is solved by Peres, and Horodeckis 1996 (Peres-Horodecki 
criterion, concurrence).

2 × 2 2 × 3
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The Verification at the EW scale
• For  and  system, it is solved by Peres, and Horodeckis 1996 (Peres-Horodecki 

criterion, concurrence). 

• The result from the ATLAS collaboration.

2 × 2 2 × 3
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P
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tic
le

-le
ve

l D

ATLAS 

s = 13 TeV, 140 fb-1

340 < mtt< 380 GeV

Total Uncertainty 
Statistical Uncertainty 
Data
Reweighting points 
Powheg + Pythia8
Entanglement limit

-

(a)

ATLAS                 
√s = 13 TeV, 140 fb

- - -

-1

Limit (Powheg + Herwig7)
Limit (Powheg + Pythia8)
Theory Uncertainty
Data
Powheg + Pythia8 (hvq)
Powheg + Herwig7 (hvq)

Particle-level Invariant Mass Range [GeV] 

380 < mtt < 500 mtt > 500340 < mtt < 380

(b)

Figure 2: (a): Calibration curve for the dependence between the particle-level value of ⇡ and the detector-level value
of ⇡, in the signal region. The yellow band represents the statistical uncertainty, while the grey band represents
the total uncertainty obtained by adding the statistical and systematic uncertainties in quadrature. The measured
values and expected values from Powheg + Pythia8 (hvq) are marked with black and red circles, respectively, and the
entanglement limit is shown as a dashed line. (b): The particle-level ⇡ results in the signal and validation regions
compared with various MC models. The entanglement limit shown is a conversion from its parton-level value of
⇡ = �1/3 to the corresponding value at particle level, and the uncertainties which are considered for the band are
described in the text.

absence of these effects in the MC simulation used to derive the calibration curve is expected to be minimal.
Additionally, the impact of the enhancement of the cross-section due to pseudo-bound-state effects on the
calibration curve and particle-level measurement has been assessed in a stress test, and found to be small
compared to the modelling uncertainties already included in the measurement.

In the signal region the P�����+P����� and P�����+H����� generators yield different predictions. The
size of the observed difference is consistent with changing the method of shower ordering and is discussed
in detail in Methods A.6.

In the signal region, the observed and expected significances with respect to the entanglement limit are
well beyond five standard deviations, independently of the MC model used to correct the entanglement
limit to account for the fiducial phase space of the measurement. This is illustrated in Figure 2(b), where
the hypothesis of no entanglement is shown. The observed result in the region with 340 < <

C C̄
< 380 GeV

establishes the formation of entangled CC̄ states. This constitutes the first observation of entanglement in a
quark–antiquark pair.

Apart from the fundamental interest in testing quantum entanglement in a new environment, this
measurement in top quarks paves the way to use high-energy colliders, such as the LHC, as a laboratory to
study quantum information and foundational problems in quantum mechanics. From a quantum information
perspective, high energy colliders are particularly interesting due to their relativistic nature, and the richness
of the interactions and symmetries that can be probed there. Furthermore, highly demanding measurements,
such as measuring quantum discord and reconstructing the steering ellipsoid, can be naturally implemented
at the LHC due to the vast number of available CC̄ events [45]. From a high-energy physics perspective,

10

ATLAS Collaboration, arXiv:2311.07288[hep-ex]; 
Y. Afik and J. R. M. de Nova, Eur. Phys. J. Plus 136 (2021) 907.

D ≡ − 3⟨cos φ(ℓ+
t ℓ−

t̄ )⟩
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The Verification at the EW scale
• For  and  system, it is solved by Peres, and Horodeckis 1996 (Peres-Horodecki 

criterion, concurrence). 

• The result from the CMS collaboration.

2 × 2 2 × 3

CMS Collaboration, arXiv:2406.03976[hep-ex].

D ≡ − 3⟨cos φ(ℓ+
t ℓ−

t̄ )⟩
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Entanglement Bell inequalities 
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for mixed states
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WW production at Higgs factory
• The initial state is a mixed state 

➡ (Generalized) Bell inequality (but not entanglement) as a test of the quantum reality

Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality 

D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Phys. Rev. Lett. 88, 040404 (2002).

“Alice” “Bob”

：  spin along the -direction

：  spin along the -direction

̂S+
n1

W+ n1
̂S+
n2

W+ n2

：  spin along the -direction

：  spin along the -direction

̂S−
n3

W− n3
̂S−
n4

W− n4

max
n1,n2,n3,n4

[p(S+
n1

= S−
n3

) + p(S+
n2

+ 1 = S−
n3

) + p(S+
n2

= S−
n4

) + p(S+
n1

= S−
n4

)

−p(S+
n1

+ 1 = S−
n3

) − p(S+
n2

= S−
n3

) − p(S+
n2

+ 1 = S−
n4

) − p(S+
n1

= S−
n4

+ 1)] > 2
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WW production at Higgs factory
• The density matrix (some technical details…)

A note of the calculation of Bell-inequalities in e+e� ! W+W�
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In this note, we show the details of the calculation of Bell-inequalities in e+e� ! W+W�
.

PACS numbers:

INTRODUCTION

The principle of the calculation has been shown in our

work [1]. We just summarize it here. The density matrix

of the final state W+W�
is

⇢̂WW /M(e+e� !W+W�
)⇢̂e+e�M(e+e� !W+W�

)
†,

(1)

where M(e+e� ! W+W�
) is the helicity amplitude of

the scattering process. Since the observables we used

are the polarization information of the W±
bosons, it is

convenience to fix the momentum of the W±
bosons in

the final state in our calculation. In the rest frame of the

W boson, the density matrix operator (as a normalized

positive linear operator in the dual space of the von

Neumann algebra of the observables) of the polarization

degree of freedoms could be written as

⇢̂W =
1

3
Î3 + diŜi + qijŜ{ij}, i, j = 1, 2, 3 (2)

where Ŝi is the spin operator of the W boson, Ŝ{ij} ⌘
{Ŝi, Ŝj} = ŜiŜj + ŜjŜi, qij = qji,

P3
i=1 q

ii
= 0 and the

Einstein summation convention is adapted in this note. It

is easy to see that Î3, Ŝi and Ŝij (with the symmetric and

traceless constraint of qij) form a basis of the real Hilbert

space A3 of the self-adjoint operators on 3-dimensional

real Hilbert space. The inner product of this Hilbert

space is defined as (Â, B̂) = Tr(A†B). Because the set of

the self-adjoint operators is not closed under the operator

product but closed under the symmetric product Â�B̂ ⌘
ÂB̂ + B̂Â, A3 is not an associate algebra but a Jordan

algebra.

We summarize some useful results proved in the

appendix in [1] as following:

Tr(Ŝi) = 0, (3)

Tr(Ŝ{ij}) = 4�ij , (4)

Tr(ŜiŜ{jk}) = 0, (5)

Tr(Ŝ{ij}Ŝ{k`}) = 2(�ik�j` + �i`�jk) + 4�ij�k`, (6)

Tr[(Ŝ{ij}Ŝ{k`} + Ŝ{k`}Ŝ{ij})Ŝm] = 0, (7)

Tr[(Ŝ{ab}Ŝ{cd} + Ŝ{cd}Ŝ{ab})Ŝ{ij}] = 8�ij(�ad�bc + �ac�bd)

+ 8(�ia�jb�cd + �ib�ja�cd + �ic�jd�ab + �id�jc�ab)

� 2(�ia�jc�bd + �ib�jc�ad + �ia�jd�bc + �ib�jd�ac

+ �ic�ja�bd + �ic�jb�ad + �id�ja�bc + �id�jb�ac). (8)

The density matrix operator of the W+W�
could be

presented as

⇢̂WW =
1

9
Î9 +

1

3
di+Ŝ

+
i ⌦ Î3 +

1

3
di�Î3 ⌦ Ŝ�

i

+
1

3
qij+ Ŝ+

{ij} ⌦ Î3 +
1

3
qij� Î3 ⌦ Ŝ�

{ij}

+Cij
d Ŝ+

i ⌦ Ŝ�
j + Ci,jk

d,q Ŝ+
i ⌦ Ŝ�

{jk}

+Cij,k
q,d Ŝ+

{ij} ⌦ Ŝ�
k + Cij,k`

q Ŝ+
{ij} ⌦ Ŝ�

{k`}, (9)

where the spin operators Ŝ±
i , Ŝ±

{ij} are defined in the rest

frame of the W±
boson. We will define the direction of

the ith axis later.

THE HELICITY AMPLITUDE OF e+e� ! W+W�

In this section, we review the calculation of helicity

amplitude of the W pair production in the standard

model (SM) and new physics (NP) beyond the SM. We

follow the calculation in [2]. The Lagrangian density of

WWV interaction is parameterized as

LWWV = gWWV


igV1 (W †

µ⌫W
µV ⌫ �W †

µV
⌫Wµ⌫

)

+iV W
†
µW⌫V

µ⌫
+

i�V

m2
W

W †
�µW

µ
⌫V

⌫�

�gV4 W †
µW⌫(@

µV ⌫
+ @⌫V µ

)

+gV5 "µ⌫⇢�(W †
µ

 !
@ ⇢W⌫)V� + ĩV W

†
µW⌫ Ṽ

µ⌫

+
i�̃V

m2
W

W †
�µW

µ
⌫ Ṽ

⌫�

�
, (10)

where V = �, Z and Wµ⌫ = @µW⌫ � @⌫Wµ. The

interaction between the W boson and the SM fermions

is assumed to be the same to the purely left-handed

interaction as in the SM. In the SM (to the leading order),

one has

gWW� = �e, gWWZ = �e cos ✓W
sin ✓W

, gV1 = 1, V = 1,

(11)

A note of the calculation of Bell-inequalities in e+e� ! W+W�

Hao Zhang
1, 2, 3, ⇤

1
Theoretical Physics Division, Institute of High Energy Physics,

Chinese Academy of Sciences, Beijing 100049, China
2
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3
Center for High Energy Physics, Peking University, Beijing 100871, China

In this note, we show the details of the calculation of Bell-inequalities in e+e� ! W+W�
.

PACS numbers:

INTRODUCTION

The principle of the calculation has been shown in our

work [1]. We just summarize it here. The density matrix

of the final state W+W�
is

⇢̂WW /M(e+e� !W+W�
)⇢̂e+e�M(e+e� !W+W�

)
†,

(1)

where M(e+e� ! W+W�
) is the helicity amplitude of

the scattering process. Since the observables we used

are the polarization information of the W±
bosons, it is

convenience to fix the momentum of the W±
bosons in

the final state in our calculation. In the rest frame of the

W boson, the density matrix operator (as a normalized

positive linear operator in the dual space of the von

Neumann algebra of the observables) of the polarization

degree of freedoms could be written as

⇢̂W =
1

3
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In this note, we show the details of the calculation of Bell-inequalities in e+e� ! W+W�
.

PACS numbers:

INTRODUCTION

The principle of the calculation has been shown in our

work [1]. We just summarize it here. The density matrix

of the final state W+W�
is

⇢̂WW /M(e+e� !W+W�
)⇢̂e+e�M(e+e� !W+W�

)
†,

(1)

where M(e+e� ! W+W�
) is the helicity amplitude of

the scattering process. Since the observables we used

are the polarization information of the W±
bosons, it is

convenience to fix the momentum of the W±
bosons in

the final state in our calculation. In the rest frame of the

W boson, the density matrix operator (as a normalized

positive linear operator in the dual space of the von

Neumann algebra of the observables) of the polarization

degree of freedoms could be written as

⇢̂W =
1

3
Î3 + diŜi + qijŜ{ij}, i, j = 1, 2, 3 (2)

where Ŝi is the spin operator of the W boson, Ŝ{ij} ⌘
{Ŝi, Ŝj} = ŜiŜj + ŜjŜi, qij = qji,

P3
i=1 q

ii
= 0 and the

Einstein summation convention is adapted in this note. It

is easy to see that Î3, Ŝi and Ŝij (with the symmetric and

traceless constraint of qij) form a basis of the real Hilbert

space A3 of the self-adjoint operators on 3-dimensional

real Hilbert space. The inner product of this Hilbert

space is defined as (Â, B̂) = Tr(A†B). Because the set of

the self-adjoint operators is not closed under the operator

product but closed under the symmetric product Â�B̂ ⌘
ÂB̂ + B̂Â, A3 is not an associate algebra but a Jordan

algebra.

We summarize some useful results proved in the

appendix in [1] as following:

Tr(Ŝi) = 0, (3)

Tr(Ŝ{ij}) = 4�ij , (4)

Tr(ŜiŜ{jk}) = 0, (5)

Tr(Ŝ{ij}Ŝ{k`}) = 2(�ik�j` + �i`�jk) + 4�ij�k`, (6)

Tr[(Ŝ{ij}Ŝ{k`} + Ŝ{k`}Ŝ{ij})Ŝm] = 0, (7)

Tr[(Ŝ{ab}Ŝ{cd} + Ŝ{cd}Ŝ{ab})Ŝ{ij}] = 8�ij(�ad�bc + �ac�bd)

+ 8(�ia�jb�cd + �ib�ja�cd + �ic�jd�ab + �id�jc�ab)

� 2(�ia�jc�bd + �ib�jc�ad + �ia�jd�bc + �ib�jd�ac

+ �ic�ja�bd + �ic�jb�ad + �id�ja�bc + �id�jb�ac). (8)

The density matrix operator of the W+W�
could be

presented as

⇢̂WW =
1

9
Î9 +

1

3
di+Ŝ

+
i ⌦ Î3 +

1

3
di�Î3 ⌦ Ŝ�

i

+
1

3
qij+ Ŝ+

{ij} ⌦ Î3 +
1

3
qij� Î3 ⌦ Ŝ�

{ij}

+Cij
d Ŝ+

i ⌦ Ŝ�
j + Ci,jk

d,q Ŝ+
i ⌦ Ŝ�

{jk}

+Cij,k
q,d Ŝ+

{ij} ⌦ Ŝ�
k + Cij,k`

q Ŝ+
{ij} ⌦ Ŝ�

{k`}, (9)

where the spin operators Ŝ±
i , Ŝ±

{ij} are defined in the rest

frame of the W±
boson. We will define the direction of

the ith axis later.

THE HELICITY AMPLITUDE OF e+e� ! W+W�

In this section, we review the calculation of helicity

amplitude of the W pair production in the standard

model (SM) and new physics (NP) beyond the SM. We

follow the calculation in [2]. The Lagrangian density of

WWV interaction is parameterized as

LWWV = gWWV


igV1 (W †

µ⌫W
µV ⌫ �W †

µV
⌫Wµ⌫

)

+iV W
†
µW⌫V

µ⌫
+

i�V

m2
W

W †
�µW

µ
⌫V

⌫�

�gV4 W †
µW⌫(@

µV ⌫
+ @⌫V µ

)

+gV5 "µ⌫⇢�(W †
µ

 !
@ ⇢W⌫)V� + ĩV W

†
µW⌫ Ṽ

µ⌫

+
i�̃V

m2
W

W †
�µW

µ
⌫ Ṽ

⌫�

�
, (10)

where V = �, Z and Wµ⌫ = @µW⌫ � @⌫Wµ. The

interaction between the W boson and the SM fermions

is assumed to be the same to the purely left-handed

interaction as in the SM. In the SM (to the leading order),

one has

gWW� = �e, gWWZ = �e cos ✓W
sin ✓W

, gV1 = 1, V = 1,

(11)
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FIG. 1. The maximum value of I(S)
3 calculated with

true neutrino momentum (solid line) or solved neutrino
momentum (dashed lines) at

p
s = 200GeV electron-positron

collider. Here, ✓ is the scattering angle between W+ and
incoming e+ beam, ⌫1 or ⌫2 denotes the neutrino solution
with larger or smaller transverse momentum respectively.

upper limit, indicating a fake signal of entanglement.
Considering momentum smearing e↵ect and kinetic cuts
further obscure the test of Bell inequalities.

Therefore, it is shown that the experimentally observed

I
(S)
3 cannot directly represent the entanglements between

the W
± pair. In addition, other entanglement criteria

that can only be measured at full leptonic decay channel
of W

± pair, such as the concurrence and partial
trace, also su↵er from the two-fold solutions of neutrino
momentum.2

IV. NEW OBSERVABLES IN SEMI-LEPTONIC
DECAY MODE

In the semi-leptonic decay modes of W± pair produced
at lepton colliders, all momenta can be determined
without any ambiguity. Despite the convenience
in kinetical reconstruction in the semi-leptonic decay
modes, a complete density matrix ⇢WW cannot be
reconstructed in these modes, because the angular
momentum of the W -boson decaying to hadrons cannot
be measured without jet flavor tagging. Consequently,

the Bell observable I
(S)
3 is not valid in these decay

channels. However, the linear polarization of the
W -boson decaying to hadrons can still be measured
correctly, because the linear polarization of a W -boson is
determined from the quadrupole distribution hqiji of its
decay products, which does not depend on the overall
sign of ~n. To construct a Bell observable that can
be measured in the semi-leptonic decay mode of W

±,
we choose operator Ŝ{xy} ⌘ {Ŝx, Ŝy} to measure the
linear polarization of the W -boson decaying to hadrons.

2 In some similar processes, the unfolding is often used to
reconstruct the parton level distribution [18, 34, 35], but there
are still debates on some technique details [36].

FIG. 2. Distributions of the decay products of W bosons
in di↵erent eigenstates of S{xy}, viewed from the z-direction.
The color stands for the density of distribution. The decay
products of the W boson in the state |S{xy} = ±1i have
positive or negative quadrupole distribution respectively.

Note that the eigenstates |S{xy} = ±1i are purely linear
polarized states with di↵erent polarization directions on
the xy-plane,

~✏|S{xy}=�1i =
1
p
2
(1, 1, 0),

~✏|S{xy}=1i =
1
p
2
(1,�1, 0),

~✏|S{xy}=0i = (0, 0, 1), (19)

and the expectation value of Ŝ{xy}, E(Ŝ{xy}), is directly
determined by the quadrupole distribution of the decay
products with E(Ŝ{xy}) = 10 hqxyi, as shown in Fig. 2.
We first consider the decay channel W

+(!
`
+
⌫`)W�(! jj). In this channel, both the angular

momentum of W
+ and the linear polarization of W

�

can be determined correctly. Therefore, we choose to
measure the correlation between the angular momentum
of W+ and the linear polarization of W� to test the Bell
inequalities in this channel, and the new Bell observable
is defined as

I
(S,L)
3 ⌘ I3(Ŝ~a1 , Ŝ~a2 ; Ŝ{x3y3}, Ŝ{x4y4}), (20)

where (xi, yi) are the coordinates in the rest frame of
W

�, and ~ai are the directions in the rest frame of W+.
We perform a Monte-Carlo simulation of e

+
e
�

!

W
+(! `

+
⌫`)W�(! jj) processes with

p
s =

200GeV. The parton level events are generated
by MadGraph5 aMC@NLO [32] and then passed
to Pythia8 [37] for showering and hadronization.
The showered events are clustered to two jets using
Fastjet [38] with the Durham algorithm. We require
the transverse momentum of lepton and jets to be larger
than 5GeV, and the invariant mass of the two jets
satisfy |mjj � mW | < 20GeV. The main backgrounds,
jjW

+ and W
�
`
+
⌫` from non-resonant production, are

small after the selection cut on the W -boson mass. As
shown in Fig. 3, we find that the showering and selection
cuts slightly dilute the signal of entanglements, but the

WW production at Higgs factory
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• Circular polarization → linear polarization.
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FIG. 1. The maximum value of I(S)
3 calculated with

true neutrino momentum (solid line) or solved neutrino
momentum (dashed lines) at

p
s = 240GeV electron-positron

collider. Here, ✓ is the scattering angle between W+ and
incoming e+ beam, ⌫1 or ⌫2 denotes the neutrino solution
with larger or smaller transverse momentum respectively.

momentum (⌫1 and ⌫2 in Fig. 1, respectively) to
reconstruct the rest frame of W± and then reconstruct
the density matrix from Eqs. (12)-(17). When averaging
the kinetic observables in Eqs. (12)-(17), we choose to
work in the beam basis [16, 41], where ẑ is along the
incoming e

+ beam direction, x̂ / ẑ ⇥ ~pW+ is the normal
direction of the scattering plan, and ŷ = ẑ ⇥ x̂. For
comparison, we also include the results calculated with
the knowledge of the true momentum of each neutrino,
as shown in Fig. 1. For a better illustration, the results
in Fig.1 is reconstructed from the parton-level momenta
of leptons directly without any selection cuts, so that the
two fold ambiguity makes the only di↵erence between
the reconstructed results and the true results. It
is found that the twofold ambiguity is destructive for

testing Bell inequalities with I
(S)
3 , as the observed value

of I
(S)
3 can be much larger than its theoretical value

and may even exceed the physical upper limit, indicating
a fake signal of entanglement. Considering momentum
smearing e↵ect and kinetic cuts further obscure the test
of Bell inequalities.

Therefore, it is shown that the experimentally observed

I
(S)
3 cannot directly represent the entanglements between

the W
± pair. In addition, other entanglement criteria

that can only be measured at full leptonic decay channel
of W

± pair, such as the concurrence and partial
trace, also su↵er from the two-fold solutions of neutrino
momentum. The ambiguity of neutrinos also exists in
the more studied tt̄ case, where some reconstruction
techniques such as unfolding [18, 42, 43] and parameter
fitting [44, 45] are commonly used.2 Similarly, to test

Bell inequality in W
±-pair system using I

(S)
3 , some

reconstruction techniques are also necessary. In this
work, instead of digging into the technique details, we

2 The parameter fitting is argued to be more trusty than unfolding,
see, e.g., Ref. [45, 46].

find that the we can simplify the test of Bell inequality
in W

± pair with a new observable in the semi-leptonic
decay mode.

IV. NEW OBSERVABLES IN SEMI-LEPTONIC
DECAY MODE

In the semi-leptonic decay modes of W± pair produced
at lepton colliders, all momenta can be determined
without any ambiguity. Despite the convenience
in kinetical reconstruction in the semi-leptonic decay
modes, a complete density matrix ⇢WW cannot be
reconstructed in these modes, because the angular
momentum of the W -boson decaying to hadrons cannot
be measured without jet flavor tagging. Consequently,

the Bell observable I
(S)
3 is not valid in these decay

channels. However, the linear polarization of the
W -boson decaying to hadrons can still be measured
correctly, because the linear polarization of a W -boson is
determined from the quadrupole distribution hqiji of its
decay products, which does not depend on the overall
sign of ~n. To construct a Bell observable that can
be measured in the semi-leptonic decay mode of W

±,
we choose operator Ŝ{xy} ⌘ {Ŝx, Ŝy} to measure the
linear polarization of the W -boson decaying to hadrons.
Note that the eigenstates |S{xy} = ±1i are purely linear
polarized states with di↵erent polarization directions on
the xy-plane,

~✏|S{xy}=�1i =
1
p
2
(1, 1, 0),

~✏|S{xy}=1i =
1
p
2
(1,�1, 0),

~✏|S{xy}=0i = (0, 0, 1), (19)

and the expectation value of Ŝ{xy}, E(Ŝ{xy}), is directly
determined by the quadrupole distribution of the decay
products with E(Ŝ{xy}) = 10 hqxyi, as shown in Fig. 2.
We first consider the decay channel W

+(!
`
+
⌫`)W�(! jj). In this channel, both the angular

momentum of W
+ and the linear polarization of W

�

can be determined correctly. Therefore, we choose to
measure the correlation between the angular momentum
of W+ and the linear polarization of W� to test the Bell
inequalities in this channel, and the new Bell observable
is defined as

I
(S,L)
3 ⌘ I3(Ŝ~a1 , Ŝ~a2 ; Ŝ{x3y3}, Ŝ{x4y4}), (20)

where (xi, yi) are the coordinates in the rest frame of
W

�, and ~ai are the directions in the rest frame of W+.

The observable I
(S,L)
3 is reconstructed in following

steps. First, measure the distribution of W
± decay

products and obtain the parameters of the density matrix
using Eqs. (12)-(17). The W

� decay hadronically and
only the quadruple distribution of W is needed. Second,
construct the density matrix ⇢

WW in Eq. (11) with
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ℐ3( ̂S ⃗a1
, ̂S ⃗a2

; ̂S{x3y3}, ̂S{x4y4}) ≡ + [P(S ⃗a1
= S{x3y3}) + P(S{x3y3} = S ⃗a2

+ 1) + P(S ⃗a2
= S{x4y4}) + P(S{x4y4} = S ⃗a1

)]
−[P(S ⃗a1

= S{x3y3} − 1) + P(S{x3y3} = S ⃗a2
) + P(S ⃗a2

= S{x4y4} − 1) + P(S{x4y4} = S ⃗a1
− 1)]
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+
1

2
Ŝ{22} �

✓
Ŝ2 cos

�

2
� Ŝ1 sin

�

2

◆2

= Î3 �

✓
Ŝ2 cos

�

2
� Ŝ1 sin

�

2

◆2

,

⇧̂33 =
1

3
Î3 +

1

6
(Ŝ{11} + Ŝ{22} � 2Ŝ{33})

= Î3 �
1

2
Ŝ{33}. (B28)

It is easy to see that the non-zero phase factor � reflects
the di↵erence between the phase of the left-hand and
right-hand circular polarization eigenstates, which could
be removed by a rotation around the 3rd axis. Generally,
the density matrix operator of the linear polarization
state along the direction ~n is

⇧̂nn = Î3 � Ŝ
2
n = ⇧̂(�n)(�n), (B29)

which does not depend on the sign of n. It is easy to
check that the components of the direction of the linear
polarization could be written as

n2i = 1�
1

2
Tr(⇧̂nnŜ{ii}). (B30)

2. W -boson pair

Likewise, the density matrix of W± pair system can
be reconstructed from the distribution of their decay
products. In their rest frame of W± respectively, we use
~n± to denote the normalized directions of two outgoing
anti-fermions decayed from W

±. The probability of
finding a pair of anti-fermions along directions ~n± is

p(~n+,~n�; ⇢WW )

=
1

N2
Tr
h
⇢̂WW ⇧̂|Sn+=1i ⌦ ⇧̂|Sn�=1i

i

=
1

N2

h1
9
+

1

3
(d+i n

+
i + d

�
i n

�
i )

+
1

3
(q+ijq

+
ij + q

�
ijq

�
ij)

+ C
d
ijn

+
i n

�
j + C

q
ij,klq

+
ijq

�
kl

+ C
dq
i,jkn

+
i q

�
jk + C

qd
ij,kq

+
ijn

�
k

i
, (B31)

where N = 4⇡/3 is normalization constant as in
Eq. (B15). As the density matrix of W± pair system is
the direct product of the two subsystems, the parameters
can be obtained by calculating the averages of the kinetic
observables n±i , q

±
ij and their combinations similarly. The

average of an observable X is calculated by

hXi =

Z
X p(~n+,~n�; ⇢WW ) d⌦+ d⌦�

, (B32)

where d⌦± denotes infinitesimal solid angles to find the
anti-fermion direction ~n±(✓±,�±) from the W

±-boson
decay products in the rest frame of W±, respectively.

Note that Eq. (B31) can be factorized as

p(~n+,~n�; ⇢WW )

=
1

N2

h1
3

✓
1

3
+ d

�
i n

�
i + q

�
ijq

�
ij

◆

+

✓
d
+
i

3
+ C

d
ijn

�
j + C

dq
i,jkq

�
jk

◆
n+i

+

 
q
+
ij

3
+ C

qd
ij,kn

�
k + C

q
ij,klq

�
jk

!
q+ij

i
(B33)

Performing the integrals in Eqs. (B17)-(B25) twice, we
obtain

⌦
n±i
↵
= d

±
i , (B34)

⌦
q±ij
↵
=

2

5
q
±
ij , (B35)

⌦
n+i n

�
j

↵
= C

d
ij , (B36)

⌦
q+ijq

�
kl

↵
=

4

25
C

q
ij,kl, (B37)

D
n+i q

�
jk

E
=

2

5
C

dq
i,jk, (B38)

⌦
q+ijn

�
k

↵
=

2

5
C

qd
ij,k. (B39)

Appendix C: Calculation of the Bell observable

The observable I3 in Eq. (20) is constructed from
the probabilities derived from the measurement of the
operators,

I3(Ŝ~a1 , Ŝ~a2 ; Ŝ{x3y3}, Ŝ{x4y4})

⌘ +
⇥
P (S~a1 = S{x3y3}) + P (S{x3y3} = S~a2 + 1)

+ P (S~a2 = S{x4y4}) + P (S{x4y4} = S~a1)
⇤

�
⇥
P (S~a1 = S{x3y3} � 1) + P (S{x3y3} = S~a2)

+ P (S~a2 = S{x4y4} � 1) + P (S{x4y4} = S~a1 � 1)
⇤
.

(C1)

A direct way to evaluate I3(Ŝ~a1 , Ŝ~a2 ; Ŝ{x3y3}, Ŝ{x4y4}) is
to project the density matrix ⇢̂WW to the eigenstates of
the operators Ŝ~a1 , Ŝ~a2 , Ŝ{x3y3} and Ŝ{x4y4}. For example,

the first term of I3(Ŝ~a1 , Ŝ~a2 ; Ŝ{x3y3}, Ŝ{x4y4}) is

P (S~a1 = S{x3y3}) =
1X

�=�1

Tr
h
⇢̂WW ⇧̂|S~a1

=�,S{x3y3}=�i

i
.

(C2)

The projective operators of the spin operator Ŝ~a1(Ŝ~a1 ⌘P3
i=1 ~a1iŜi) are

⇧̂~a1(S~a1 = �1) =
1

2
(�Ŝ~a1 + Ŝ

2
~a1
), (C3)

⇧̂~a1(S~a1 = 1) =
1

2
(Ŝ~a1 + Ŝ

2
~a1
), (C4)
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⇧̂~a1(S~a1 = 0) = Î3 � Ŝ
2
~a1
. (C5)

And the projective operators of the Ŝ{x3y3} are (see
Eq. (19))

⇧̂x3y3(S{x3y3} = �1) = Î3 � Ŝ
2
~✏1 , ~✏1 =

x̂3 + ŷ3
p
2

, (C6)

⇧̂x3y3(S{x3y3} = 1) = Î3 � Ŝ
2
~✏2 , ~✏2 =

x̂3 � ŷ3
p
2

, (C7)

⇧̂x3y3(S{x3y3} = 0) = Î3 � Ŝ
2
~✏3 , ~✏3 = x̂3 ⇥ ŷ3. (C8)

Here, the x̂3 and ŷ3 are the normalized directions of
the two axes in the orthogonal coordinates (x̂3, ŷ3, ẑ3).
Therefore the probability can be evaluated by

P (S~a1 = S{x3y3}) =
1X

�=�1

Tr
h
⇢̂WW ⇧̂|S~a1

=�,S{x3y3}=�i

i

= Tr
h
⇢̂WW · ⇧̂~a1(S~a1 = �1)⌦ ⇧̂x3y3(S{x3y3} = �1)

i

+Tr
h
⇢̂WW · ⇧̂~a1(S~a1 = 1)⌦ ⇧̂x3y3(S{x3y3} = 1)

i

+Tr
h
⇢̂WW · ⇧̂~a1(S~a1 = 0)⌦ ⇧̂x3y3(S{x3y3} = 0)

i

= 1� 2q�ij✏3i✏3j � 2Cdq
i,jka1i(✏1j✏1k � ✏2j✏2k)

+ 2Cq
ij,kla1ia1j(�✏1k✏1l � ✏2k✏2l + 2✏3k✏3l). (C9)

Similar to the definition of ~✏1,2,3, we use ~!1, ~!2 and ~!3

to denote the polarization directions of the eigenstates of
Ŝ{x4y4}, and then evaluate the other terms. The explicit
form of I3 is

I3(Ŝ~a1 , Ŝ~a2 ; Ŝ{x3y3}, Ŝ{x4y4})

= 2q�ij(!1i!1j + !2i!2j � 2!3i!3j)

+ 2Cdq
i,jka1i(2✏1j✏1k � ✏2j✏2k � ✏3j✏3k + !1j!1k

� 2!2j!2k + !3j!3k)

+ 2Cdq
i,jka2i(�2✏1j✏1k + ✏2j✏2k + ✏3j✏3k + 2!1j!1k

� !2j!2k � !3j!3k)

+ 6Cq
ij,kla1ia1j(�✏2k✏2l + ✏3k✏3l � !1k!1l + !3k!3l)

+ 6Cq
ij,kla2ia2j(✏2k✏2l � ✏3k✏3l � !2k!2l + !3k!3l)

(C10)

Given that the directions ~a1, ~a2, {x3y3} and {x4y4}

of these operators chosen for the observable are not
predetermined, it is necessary to perform a parameter
scan over all possible directions. This enables us to
identify the maximum of I3 as the observable.
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WW production at Higgs factory
• Some details ( ) 

• 240GeV electron-positron collider 

• (LO) MADGRAPH5_AMC@NLO+PYTHIA8+FASTJET 

• 2 Exclusive jets with Durham algorithm ( ) 

• One isolated charged lepton ( ) ( ) 

• Missing energy ( ) 

• Reconstructed W mass ( )

e+e− → W+W− → ℓ±νjj

Ej > 5GeV, |ηj | < 3.5

e±, μ± Eℓ > 15GeV, |cos θℓ | < 0.98

cos θℓν < 0.2

|mjj − mW | < 20GeV
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Parton

Showered

e+e-→ W +(→l+ν)W -(→jj)

s =240 GeV
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WW production at Higgs factory
• The result

At 240GeV e+e− collider, one can verify the violation 
of the Bell inequality at 5.0σ significance with ~180 
fb-1 integrated luminosity. 
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Conclusion and Discussion
• We provide a realistic approach to test Bell inequalities in W pair systems using a new set of 

Bell observables based on measuring the linear polarization of W bosons. 

• Our observables depend on only part of the density matrix that can be correctly measured in 
the semi-leptonic decay mode of W.  

• Why should we test the correlations at higher and higher scale?



Thank you!


