Towards NNLO calculation for high energy production of tTH

Li Lin Yang Zhejiang University

The top quark Yukawa coupling

2

Relevant for

- ➤ Origin of masses of fundamental fermions
- ➤ Matter-anti-matter asymmetry (possible source of CP violation)
- ➤ Higgs effective potential (vacuum stability)

Associated tTH production

3

➤ Direct probe of top quark Yukawa coupling ➤ Observed in 2018 by ATLAS and CMS ➤ CP structure probed in 2020

The need for precision

The need for precision

4 Fig. 30: (left) Summary plot showing the total expected *±*1 uncertainties in S2 (with YR18 systematic

 \sqrt{s} = 14 TeV, 3000 fb⁻¹ per experiment

Theoretical status

5

➤ NLO + resummation Broggio, Ferroglia, Pecjak, LLY: 1611.00049

➤ Coulomb corrections Ju, LLY: 1904.08744

400

600

 V/\sqrt{N} NLO+NNLL'($\mu_{t,0}$ = M/2)

 $N\sqrt{N}$ NLO+NNLL ($\mu_{f,0} = M$)

LHC 13 TeV

800

 M_{rf} (GeV)

 $t\bar{t}H$

Theoretical status

5

➤ NLO + resummation Broggio, Ferroglia, Pecjak, LLY: 1611.00049

➤ Coulomb corrections Ju, LLY: 1904.08744

- ➤ Bottlenecks towards NNLO
	- ➤ Two-loop amplitudes
	- ➤ IR subtraction

400

600

700

800

 M_{rf} (GeV)

e.g.: 2312.08131, 2402.03301

+ many more planar and non-planar families

Two-loop amplitudes for $t\bar{t}H$

- ➤ Two-loop five-point amplitudes with 7 scales
- ➤ Partial results for simpler families
- ➤ Full results require much more efforts (analytic + numeric methods)

*J*¹ IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

*J*² Two-loop poles = Two-loop Z-factor χ Ohe-loop amplitude to ϵ^1

Z−¹ (*ϵ*)ℳUV renormalized(*ϵ*) ⁼ (*ϵ*⁰

*J*² Two-loop poles = Two-loop Z-factor χ Ohe-loop amplitude to ϵ^1

*J*¹ IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

 \mathcal{T}_{\bullet} Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

Z−¹ (*ϵ*)ℳUV renormalized(*ϵ*) ⁼ (*ϵ*⁰

*J*²

*J*¹ IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

Ferroglia, Neubert, Pecjak, LLY: Ferrogiia, Neubert, Pecjak, LLY: Generically known in terms of symbols 0907.4791, 0908.3676

Z−¹ (*ϵ*)ℳUV renormalized(*ϵ*) ⁼ (*ϵ*⁰

Two-loop poles = Two-loop Z-factor χ Ohe-loop amplitude to ϵ^1

Jiang, LLY: 2303.11657

H

*J*¹ IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

 $\text{Chen, Ma, LLY: } 2201.12998$ Ferroglia, Neubert, Pecjak, LLY: Ferrogiia, Neubert, Pecjak, LLY: Generically known in terms of symbols 0907.4791, 0908.3676 Jiang, LLY: 2303.11657

- \blacktriangleright Predict two-loop IR poles for tTH $\frac{1}{\frac{B^q}{C^q}}$ $\frac{2.390051823}{-4.780103646}$ $\frac{15.03938540}{-22.69017086}$ $\frac{0.597121534}{49.54607207}$ $\frac{-34.95784899}{106.0851578}$
- \overline{p} in \overline{a} ➤ Provide strong check on two-loop amplitudes
- ▶ Validate IR subtraction

Z−¹ (*ϵ*)ℳUV renormalized(*ϵ*) ⁼ (*ϵ*⁰

Two-loop poles = Two-loop Z-factor χ Ohe-loop amplitude to ϵ^1

Eikonal approximation: $2 \rightarrow 2$ kinematics

 $\mathcal{M}(\lbrace p_i \rbrace, k) \simeq F(\alpha_S(\mu_R); \frac{m_t}{\mu_R}) \frac{m_t}{v} \sum_{i=3,4} \frac{m_t}{p_i \cdot k} \mathcal{M}(\lbrace p_i \rbrace)$

8

100

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$
\mathcal{M}(\lbrace p_i \rbrace, k) \simeq F(\alpha_S(\mu_R); \frac{m_t}{\mu_R}) \frac{m_t}{v} \sum_{i=3,4} \frac{r_i}{p_i}
$$

8

 $pp \to t\bar{t}H$

$\mu_R = \mu_F = m_{\rm t} + m_{\rm H}/2$

100

Not a good approximation for two-loop amplitudes:

- ➤ One-loop already 30% error
- ➤ Two-loop estimated 100% error

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$
\mathcal{M}(\{p_i\},k) \simeq F(\alpha_{\rm S}(\mu_{\rm R});\frac{m_t}{\mu_{\rm R}}) \frac{m_t}{v} \sum_{i=3,4} \frac{r_i}{p_i}
$$

8

 $pp \to t\bar{t}H$

100

Not a good approximation for two-loop amplitudes:

- ➤ One-loop already 30% error
- ➤ Two-loop estimated 100% error

The argument was: two-loop amplitudes small for total cross section

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$
\mathcal{M}(\{p_i\},k) \simeq F(\alpha_{\rm S}(\mu_{\rm R});\frac{m_t}{\mu_{\rm R}}) \frac{m_t}{v} \sum_{i=3,4} \frac{r_i}{p_i}
$$

8

100

Not a good approximation for two-loop amplitudes:

- ➤ One-loop already 30% error
- ➤ Two-loop estimated 100% error

The argument was: two-loop amplitudes small for total cross section

What about differential cross sections?

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

$$
\mathcal{M}^{[p],(m)}\left(\{k_i\}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right) = \frac{\text{Mitov, Moch: hep-ph/06121}}{\prod_{i \in \text{ all legs}} \left(Z_{[i]}^{(m|0)}\left(\frac{m^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right)\right)^{\frac{1}{2}} \times \mathcal{M}^{[p],(m=0)}\left(\{k_i\}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \epsilon\right)}
$$

Mitov, Moch: hep-ph/0612149

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

$$
\mathcal{M}^{[p],(m)}\left(\{k_i\},\frac{Q^2}{\mu^2},\alpha_s(\mu^2),\varepsilon\right) =
$$

$$
\prod_{i \in \text{ all legs}\}\left(Z_{[i]}^{(m|0)}\left(\frac{m^2}{\mu^2},\alpha_s(\mu^2)\right)\right)
$$

Mitov, Moch: hep-ph/0612149

 $(\theta), \varepsilon\bigg)\bigg)^{\frac{1}{2}} \times \mathcal{M}^{[p],(m=0)}\left(\{k_i\}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2), \varepsilon\right).$

But the heavy-quark bubbles are not included!

Top quark pair production

10

1205.3662 1306.1537 1310.3836 1601.07020 1803.07623 1901.08281

High energy factorization has been applied in the resummation for top quark pair production

Best precision: NNLO+NNLL' in QCD + NLO in EW

Top quark pair production

10

1205.3662 1306.1537 1310.3836 1601.07020 1803.07623 1901.08281

High energy factorization has been applied in the resummation for top quark pair production

Best precision: NNLO+NNLL' in QCD + NLO in EW

But the factorization of heavy quark bubbles was not understood…

Heavy-quark bubbles

11

Wang, Xia, LLY, Ye: 2312.12242

A new factorization formula

$$
\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2},
$$

The new soft function

$$
\boldsymbol{\mathcal{S}}(\{p\},\{m\})=1+\Big(\frac{\alpha_s}{4\pi}\Big)^2\sum_{\substack{i,j\\i\neq j}}(-\boldsymbol{T}_i\cdot \boldsymbol{T}_j)\sum_{h}\mathcal{S}^{(2)}(s_{ij},n)
$$

 $\mathcal{S}^{(2)}(s_{ij},n$

12

Rapidity divergence: analytic regulator

$$
\frac{1}{k_1^2 - m_h^2]^{a_1}} \frac{1}{[k_2^2 - m_h^2]^{a_2}} \frac{1}{[(k_1 + k_2)^2]^{a_3}} \frac{1}{[(k_1 + k_2 - p_1)^2 - m_1^2]^{a_4}} \n\frac{\left(-\tilde{\mu}^2\right)^{\nu}}{[(k_1 + k_2 + p_2)^2 - m_2^2]^{a_5 + \nu}} \frac{1}{[(k_1 - p_1)^2]^{a_6}} \frac{1}{[(k_1 + p_2)^2]^{a_7}}, \quad (3.4)
$$

 $(m_h^2)+{\cal O}(\alpha_s^3)$

$$
m_h^2) = T_F \left(\frac{\mu^2}{m_h^2}\right)^{2\epsilon} \left(-\frac{4}{3\epsilon^2} + \frac{20}{9\epsilon} - \frac{112}{27} - \frac{4\zeta_2}{3}\right) \ln \frac{-s_{ij}}{m_h^2}
$$

hard : $k^{\mu} \sim \sqrt{|s|},$ n_i -collinear : $(n_i \cdot k, \bar{n}_i \cdot k, k_\perp) \sim \sqrt{|s|} (\lambda^2, 1, \lambda)$ soft : $k^{\mu} \sim \sqrt{|s|} \lambda$.

Validation of the new formula

$$
\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2}
$$

13

- ➤ Quark form factors: heavy-heavy, heavy-light, light-light
- Gluon form factor
- ➤ Top quark pair amplitude

Checked in various situations:

 $\mathcal{S}(\lbrace p \rbrace , \lbrace m \rbrace) | \mathcal{M}^{\text{massless}}(\lbrace p \rbrace) \rangle$

Two-loop amplitudes for tTH in the high-energy limit

$$
\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2}
$$

 p_4

(a) planar pentagon-box (PB)

(b) non-planar hexagon-box (HB)

(c) non-planar double pentagon (DP) (d) planar hexagon-triangle (HT)

Wang, Xia, LLY, Ye: 2402.00431

 $\left\langle \text{ } \mathcal{S}(\{p\},\{m\}) \left| \mathcal{M}^{\text{massless}}(\{p\}) \right. \right\rangle$

- ➤ Massless amplitudes computed using standard techniques
- ➤ Very large expressions, simplified using MultivariateApart
- Fast numeric evaluation with PentagonMI

Numerical results

15

IR poles validated against exact results in Chen, Ma, Wang, LLY, Ye: 2202.02913

Note: without the heavy quark bubble, the scale-dependence would be wrong!

Numerical results

16

- ➤ Two-loop amplitudes at high energies are ready
- ➤ Combine with low energy approximations (threshold / soft Higgs)?
- ➤ Differential cross sections (IR subtraction)?

Towards sub-leading factorization

$$
\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2}
$$

Power corrections to the factorization formula

Important for intermediate energy range

Towards sub-leading factorization

$$
\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle=\prod_{i}\left(\mathcal{Z}^{(m|0)}_{[i]}(\{m\})\right)^{1/2}\boldsymbol{\mathcal{S}}(\{p\},\{m\})\left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle+\mathit{\mathcal{O}}\left(\frac{m^{2}}{s_{ij}}\right)
$$

Ongoing: analyzing sub-leading corrections in $1 \rightarrow 3$ form factors using two methods

- ➤ Small-mass expansion
- ➤ Method of regions

Summary and outlook

- ➤ The tTH production is important for probing the top quark Yukawa coupling
- ➤ Theoretical status:
	- ➤ NLO+NNLL resummation for differential cross sections
	- ➤ NNLO with soft Higgs approximation for total cross section
	- ➤ Two-loop IR poles computed, but full NNLO not available
- ➤ Towards NNLO prediction at high energies
	- ➤ High energy factorization formula for QCD amplitudes
	- ➤ Applied to tTH production: approximate two-loop amplitudes now available
	- ➤ Future: sub-leading corrections to the factorization formula
	- ➤ Future: combine with real emissions (IR subtraction) for differential cross sections

Summary and outlook

- ➤ The tTH production is important for probing the top quark Yukawa coupling
- ➤ Theoretical status:
	- ➤ NLO+NNLL resummation for differential cross sections
	- ➤ NNLO with soft Higgs approximation for total cross section
	- ➤ Two-loop IR poles computed, but full NNLO not available
- ➤ Towards NNLO prediction at high energies
	- ➤ High energy factorization formula for QCD amplitudes
	- ➤ Applied to tTH production: approximate two-loop amplitudes now available
	- ► Future: combine with real emissions (IR subtraction) for differential cross sections π di far olien ks sedic olien u!
	- ➤ Future: sub-leading corrections to the factorization formula

