Towards NNLO calculation for high energy production of tTH

Li Lin Yang Zhejiang University

The top quark Yukawa coupling

Relevant for

- ➤ Origin of masses of fundamental fermions
- ➤ Matter-anti-matter asymmetry (possible source of CP violation)
- ➤ Higgs effective potential (vacuum stability)

Associated tTH production

- ➤ Direct probe of top quark Yukawa coupling
- ➤ Observed in 2018 by ATLAS and CMS
- ➤ CP structure probed in 2020

The need for precision

The need for precision

Theoretical status

➤ NLO + resummation Broggio, Ferroglia, Pecjak, LLY: 1611.00049

➤ Coulomb corrections Ju, LLY: 1904.08744

	13 TeV LHC (pb)	14 TeV LHC (pb)
NLO	$0.493^{+5.8\%}_{-9.2\%}$	$0.597^{+6.1\%}_{-9.2\%}$
NLL'+NLO	$0.521^{+1.9\%}_{-2.6\%}$	$0.630^{+2.3\%}_{-2.6\%}$
K-factor	1.06	1.06

Theoretical status

➤ NLO + resummation Broggio, Ferroglia, Pecjak, LLY: 1611.00049

Coulomb corrections

Ju, LLY: 1904.08744

	13 TeV LHC (pb)	14 TeV LHC (pb)
NLO	$0.493^{+5.8\%}_{-9.2\%}$	$0.597^{+6.1\%}_{-9.2\%}$
NLL'+NLO	$0.521^{+1.9\%}_{-2.6\%}$	$0.630^{+2.3\%}_{-2.6\%}$
K-factor	1.06	1.06

- ➤ Bottlenecks towards NNLO
 - ➤ Two-loop amplitudes
 - ➤ IR subtraction

Two-loop amplitudes for $t\bar{t}H$

- ➤ Two-loop five-point amplitudes with 7 scales
- ➤ Partial results for simpler families e.g.: 2312.08131, 2402.03301
- > Full results require much more efforts (analytic + numeric methods)

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

$$Z^{-1}(\epsilon) \mathcal{M}$$
 UV renormalized = $O(\epsilon)$

Two-loop poles = Two-loop Z-factor \times One-loop amplitude to ϵ^1

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

$$Z^{-1}(\epsilon) \mathcal{M}$$
 UV renormalized = $O(\epsilon)$

Two-loop poles = Two-loop Z-factor χ One-loop amplitude to ϵ^1

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

$$Z^{-1}(\epsilon) \mathcal{M}$$
UV renormalized = $O(\epsilon)$

Two-loop poles = Two-loop Z-factor χ One-loop amplitude to ϵ^1

Ferroglia, Neubert, Pecjak, LLY: 0907.4791, 0908.3676

Generically known in terms of symbols

Chen, Ma, LLY: 2201.12998

Jiang, LLY: 2303.11657

Chen, Ma, Wang, LLY, Ye: 2202.02913

IR singularities of QCD amplitudes admit a universal structure due to soft/collinear factorization

$$Z^{-1}(\epsilon) \mathcal{M}$$
 UV renormalized = $O(\epsilon)^{\mathcal{H}}$

Two-loop poles = Two-loop Z-factor χ One-loop amplitude to ϵ^1

Generically known in terms of symbols

Chen, Ma, LLY: 2201.12998

Jiang, LLY: 2303.11657

- Predict two-loop IR poles for tTH
- ➤ Provide strong check on two-loop amplitudes
- ➤ Validate IR subtraction

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}
g	17.37022326	6.277797530	-162.1830217	559.8062598
g	-32.49510001	-34.75486260	-624.1343773	3901.332369
g	32110310001	-9.463444735	-54.41556200	-497.5350517
g			143.6321997	-578.4857199
g		-20.26526047	46.54471184	-10.69967085
g h			-24.23013938	79.68650479
g		37.91095001	-74.94866603	71.66904977
g			43.70151160	-132.3384924
г д 1			4.731722368	85.25318119
g h g l g				6.363526190
g l			3.860049613	-10.52987601
$\frac{\iota}{g}$				8.076713126
g h				
rı.			-7.221133335	19.49234494
h				-14.56717053
n ! ;				
1	2.390051823	15.03938540	0.597121534	-34.95784899
q	-4.780103646	-22.69017086	49.54607207	106.0851578
q	2.390051823	7.650785464	-186.5751188	-21.39439443
q l		-2.390051823	0.308675876	-6.605875838
$_{h}^{q}$			6.244349191	4.860387981
$_{l}^{q}$		2.390051823	1.610219156	77.52356965
q h			-6.244349191	19.76269918
q				
q lh				
q				

Approximation with soft Higgs

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathcal{S}}(\mu_{\mathcal{R}}); \frac{m_t}{\mu_{\mathcal{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{m_t}{p_i \cdot k} \mathcal{M}(\{p_i\})$$

Approximation with soft Higgs

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}}); \frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{m_t}{p_i \cdot k} \mathcal{M}(\{p_i\})$$

Not a good approximation for two-loop amplitudes:

- ➤ One-loop already 30% error
- ➤ Two-loop estimated 100% error

Approximation with soft Higgs

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathrm{S}}(\mu_{\mathrm{R}}); \frac{m_t}{\mu_{\mathrm{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{m_t}{p_i \cdot k} \mathcal{M}(\{p_i\})$$

Not a good approximation for two-loop amplitudes:

- ➤ One-loop already 30% error
- ➤ Two-loop estimated 100% error

The argument was: two-loop amplitudes small for total cross section

Eikonal approximation: $2 \rightarrow 2$ kinematics

$$\mathcal{M}(\{p_i\}, k) \simeq F(\alpha_{\mathcal{S}}(\mu_{\mathcal{R}}); \frac{m_t}{\mu_{\mathcal{R}}}) \frac{m_t}{v} \sum_{i=3,4} \frac{m_t}{p_i \cdot k} \mathcal{M}(\{p_i\})$$

Not a good approximation for two-loop amplitudes:

- ➤ One-loop already 30% error
- ➤ Two-loop estimated 100% error

The argument was: two-loop amplitudes small for total cross section

What about differential cross sections?

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

$$\mathcal{M}^{[p],(m)}\left(\{k_i\}, \frac{\mathcal{Q}^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \epsilon\right) = \frac{\mathsf{Mitov, Moch: hep-ph/0612149}}{\prod\limits_{i \in \{\mathrm{all legs}\}} \left(Z_{[i]}^{(m|0)}\left(\frac{m^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \epsilon\right)\right)^{\frac{1}{2}} \times \mathcal{M}^{[p],(m=0)}\left(\{k_i\}, \frac{\mathcal{Q}^2}{\mu^2}, \alpha_{\mathrm{s}}(\mu^2), \epsilon\right)}$$

Approximation in the high energy limit

It is known that a massive amplitude can be factorized into a massless amplitude and a collinear factor for each leg in the high-energy limit

$$\mathcal{M}^{[\mathrm{p}],(m)}\left(\{k_i\},\frac{Q^2}{\mu^2},\alpha_{\mathrm{s}}(\mu^2),\epsilon\right) = \frac{\mathrm{Mitov,\ Moch:\ hep-ph/0612149}}{\prod\limits_{i\in\ \{\mathrm{all\ legs}\}}\left(Z^{(m|0)}_{[i]}\left(\frac{m^2}{\mu^2},\alpha_{\mathrm{s}}(\mu^2),\epsilon\right)\right)^{\frac{1}{2}}\times\ \mathcal{M}^{[\mathrm{p}],(m=0)}\left(\{k_i\},\frac{Q^2}{\mu^2},\alpha_{\mathrm{s}}(\mu^2),\epsilon\right)}$$

But the heavy-quark bubbles are not included!

Top quark pair production

High energy factorization has been applied in the resummation for top quark pair production

1205.3662 1306.1537 1310.3836 1601.07020 1803.07623 1901.08281

Best precision:

NNLO+NNLL' in QCD + NLO in EW

Top quark pair production

High energy factorization has been applied in the resummation for top quark pair production

1205.3662 1306.1537 1310.3836 1601.07020 1803.07623 1901.08281

Best precision:

NNLO+NNLL' in QCD + NLO in EW

But the factorization of heavy quark bubbles was not understood...

Heavy-quark bubbles

A new factorization formula

The new soft function

hard:
$$k^{\mu} \sim \sqrt{|s|}$$
,

$$n_i$$
-collinear: $(n_i \cdot k, \, \bar{n}_i \cdot k, \, k_\perp) \sim \sqrt{|s|} \, (\lambda^2, \, 1, \, \lambda)$

soft:
$$k^{\mu} \sim \sqrt{|s|} \lambda$$
.

Rapidity divergence: analytic regulator

$$I_{\{a_i\}} \equiv \mu^{4\epsilon} \int \frac{dk_1}{(2\pi)^d} \frac{dk_2}{(2\pi)^d} \frac{1}{[k_1^2 - m_h^2]^{a_1}} \frac{1}{[k_2^2 - m_h^2]^{a_2}} \frac{1}{[(k_1 + k_2)^2]^{a_3}} \frac{1}{[(k_1 + k_2 - p_1)^2 - m_1^2]^{a_4}} \times \frac{\left(-\tilde{\mu}^2\right)^{\nu}}{[(k_1 + k_2 + p_2)^2 - m_2^2]^{a_5 + \nu}} \frac{1}{[(k_1 - p_1)^2]^{a_6}} \frac{1}{[(k_1 + p_2)^2]^{a_7}}, \quad (3.4)$$

$$\mathcal{S}(\{p\}, \{m\}) = 1 + \left(\frac{\alpha_s}{4\pi}\right)^2 \sum_{\substack{i,j\\i\neq j}} (-T_i \cdot T_j) \sum_h \mathcal{S}^{(2)}(s_{ij}, m_h^2) + \mathcal{O}(\alpha_s^3)$$

$$\mathcal{S}^{(2)}(s_{ij}, m_h^2) = T_F \left(\frac{\mu^2}{m_h^2}\right)^{2\epsilon} \left(-\frac{4}{3\epsilon^2} + \frac{20}{9\epsilon} - \frac{112}{27} - \frac{4\zeta_2}{3}\right) \ln \frac{-s_{ij}}{m_h^2}$$

Validation of the new formula

$$\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle$$

Checked in various situations:

- Quark form factors: heavy-heavy, heavy-light, light-light
- ➤ Gluon form factor
- ➤ Top quark pair amplitude

Two-loop amplitudes for tTH in the high-energy limit

Wang, Xia, LLY, Ye: 2402.00431

$$\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle$$

(a) planar pentagon-box (PB)

(b) non-planar hexagon-box (HB)

- ➤ Massless amplitudes computed using standard techniques
- ➤ Very large expressions, simplified using MultivariateApart
- ➤ Fast numeric evaluation with PentagonMI

(c) non-planar double pentagon (DP) (d) planar hexagon-triangle (HT)

Numerical results

IR poles validated against exact results in Chen, Ma, Wang, LLY, Ye: 2202.02913

Note: without the heavy quark bubble, the scale-dependence would be wrong!

Numerical results

- ➤ Two-loop amplitudes at high energies are ready
- Combine with low energy approximations (threshold / soft Higgs)?
- ➤ Differential cross sections (IR subtraction)?

Towards sub-leading factorization

$$\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle + \left(\mathcal{O}\left(\frac{m^2}{s_{ij}}\right)\right)$$

Power corrections to the factorization formula

Important for intermediate energy range

Towards sub-leading factorization

$$\left|\mathcal{M}^{\text{massive}}(\{p\},\{m\})\right\rangle = \prod_{i} \left(\mathcal{Z}_{[i]}^{(m|0)}(\{m\})\right)^{1/2} \mathcal{S}(\{p\},\{m\}) \left|\mathcal{M}^{\text{massless}}(\{p\})\right\rangle + \mathcal{O}\left(\frac{m^2}{S_{ij}}\right)$$

Ongoing: analyzing sub-leading corrections in $1 \rightarrow 3$ form factors using two methods

- ➤ Small-mass expansion
- ➤ Method of regions

Summary and outlook

- ➤ The tTH production is important for probing the top quark Yukawa coupling
- ➤ Theoretical status:
 - ➤ NLO+NNLL resummation for differential cross sections
 - > NNLO with soft Higgs approximation for total cross section
 - ➤ Two-loop IR poles computed, but full NNLO not available
- ➤ Towards NNLO prediction at high energies
 - > High energy factorization formula for QCD amplitudes
 - > Applied to tTH production: approximate two-loop amplitudes now available
 - ➤ Future: sub-leading corrections to the factorization formula
 - Future: combine with real emissions (IR subtraction) for differential cross sections

Summary and outlook

- ➤ The tTH production is important for probing the top quark Yukawa coupling
- ➤ Theoretical status:
 - ➤ NLO+NNLL resummation for differential cross sections
 - > NNLO with soft Higgs approximation for total cross section
 - ➤ Two-loop IR poles computed, but full NNLO not available
- ➤ Towards NNLO prediction at high energies
 - > High energy factorization formula for QCD amplitudes
 - ➤ Applied to tTH production: approximate two-loop amplitudes now available
 - ➤ Future: sub-leading corrections to the factorization formula
 - Future: combine with real emissions (IR subtraction) for differential research 1970 11.