2024 August 16th Search for Di-resonant New Physics 国物理学会高能物 with Massive Jets at CMS

Antonis Agapitos

Qiang Li Congqiao Li Dawei Fu Leyun Gao Qilong Guo Yuzhe Zhao

Motivation: BSM physics beyond minimal

- Hierarchy: EW-M_{PI} scale gap motivates BSM physics.
- No BSM physics yet \rightarrow time to look in non-standard final states/scenarios.

LHC Signals from Cascade Decays of Warped Vector Resonances <u>arXiv:1612.00047</u>

Theory sources: Kaustubh Agashe, et al

his talk at CMS

Dedicated Strategies for Triboson Signals from Cascade Decays of Vector Resonances <u>arXiv:1711.09920</u>
 Detecting a Boosted Diboson Resonance <u>arXiv:1809.07334</u>

EWED landscape & CMS searches

16/8/24

gKK search at CMS, Antonis Agapitos, PKU

 $W_{\rm KK} \to W_l \varphi \to W_l gg \ (5.3)$

 W/Z_{KK}

W-Wgg-BP1

W-Wgg-BP2

2.5

3

1

1.5

3.5

3

4.4

3.5

3

3

3.5

5.1

← 2201.08476 & 2112.13090

The CMS detect at the LHC

CMS

Compact Muon Solenoid Mass: ~12500 Tones Size: ~15m x 22m Magnetic field: 4 T (3.8 T) CMS collaboration is 30 y.o. ~6100 collaborators ~250 Institutes ~57 countries <u>here for more</u>

Signal topology & Preselection

- We use benchmark point at which the dominant process is: $g_{KK} \rightarrow gR \rightarrow gWW$
- Big advantage of the W-tagging & narrow mass-window to suppress BKG.

- g_{KK} is spin-1, R is spin-0
- We focus on the OI channel: $g_{KK} \rightarrow gR \rightarrow gWW \rightarrow jets$ (BR~56%)
- We cover only the resolved R case: $0.2 \le m_R/m_{gKK} \le 0.9 \Rightarrow 3$ jets

Strategy:

- 1. Tri-jet selection,
- identify (tag) 2 jets as
 W-candidates with PNet,
- 3. form m_{ii} (R) and m_{iii} (g_{KK}),
- 4. bin over m_{ii} , fit m_{iii} . \rightarrow

Preselection cuts:

- 1. N_{j-AK8}=3, N_{lep}=0,
- 2. $p_{T_{i1}(i2,i3)} > 400 (200) \text{ GeV,}$ $|\eta_i| < 2.4, \eta = \ln[\tan(\theta/2)]$
- 3. $m_{j\alpha,jb} > 50 \text{ GeV}$,
- 4. $H_T \equiv \sum_i p_T(jet[i]) > 1.1 \text{ TeV}$

Datasets, Trigger, & MC samples

BKG samples

DATA: pp collision at 13 TeV

- Full Run 2 (JetHT) dataset used.
- Trigger paths: $H_T (H_T \equiv \sum_i p_T(jet[i])) \& m_{jAK8}$ -based
- $L = 138 \text{ fb}^{-1}$
- Triggers OR combination found to be eff. $>\sim$ 99% for H_T>1.1 TeV.

QCD_HT500to700_TuneCP5_J QCD_HT700to1000_TuneCP5 OCD_HT1000to1500_TuneCP QCD_HT1500to2000_TuneCP QCD_HT2000toInf_TuneCP5_ TTToHadronic_TuneCP5_13T TTToSemiLeptonic_TuneCP5. WJetsToQQ_HT-400to600_Tui WJetsToQQ_HT-600to800_Tui WJetsToQQ_HT-800toInf_Tun ZJetsToQQ_HT-400to600_Tun ZJetsToQQ_HT-800toInf_Tune ZJetsToQQ_HT-600to800_Tun ST_tW_antitop_5f_inclusiveDe ST_tW_top_5f_inclusiveDecay ST_t-channel_antitop_4f_Inclu ST_t-channel_top_4f_Inclusive ST_s-channel_4f_hadronicDec WW_TuneCP5_13TeV-pythia8 ZZ_TuneCP5_13TeV-pythia8 WZ_TuneCP5_13TeV-pythia8 QCD multijet Top (tt, single t) Other (V+jet, VV)

Simulation (MC) Madgraph, Pythia ...

W-candidate selection on m_{iet}

130

120

110

100

90

80

70

60

 $W \rightarrow qq$ are boosted: using the <u>anti-KT</u> algo form single AK8 jets

Boosted jets: Increasing transverse momentum

- The 2 highest <u>ParticleNet</u> score jets j_a, j_b are assigned to be the W-candid., gluon is j.
- We demand the jets <u>Soft Drop</u> masses m_{ja,ib}, to be on W-peak with the condition of m_{85} variable: $m_{85} \equiv \sqrt{(m_{ja} + 85)^2 + (m_{jb} + 85)^2} < 15 \text{ GeV}$
- We define 3 regions based on m_{85} :
 - Signal Regions (SRs)have:m₈₅ < 15 GeV.
 - Control Regions (CRs) are: $m_{85} > 15 \text{ GeV } \& m_{90} < 50 \text{ GeV}$
 - Validation Regions (VRs): $15 < m_{85} < 20$ GeV.

The <u>Soft-Drop</u> is an algorithm which remove soft & wide-angle radiation from within the jet, improving mass scale & resolution:

We use the <u>anti-kT algo</u> to cluster individual particles (PF candidates) into jets (using clustering param. R).

W-tagging with PNet & SR binning

- Use Particle Net (PNet) tagger (1902.08570) to identify $W \rightarrow qq$ merged jets.
 - ightarrow Graph NN, treat jets as <u>particle cloud</u> ightarrow
 - \rightarrow Convolution on point clouds (EdgeConv <u>1801.07829</u>)

R, gKK reconstruction & SR binning

- M_R reco. from j_{a} , j_b : $m_{jj}* \equiv m_{jj} - mja - m_{jb} + 2(85 \text{ GeV})$
- M_{gKK} reco. from j_a , j_b , j_c : $m_{jjj}* \equiv m_{jjj} - m_{ja} - m_{jb} + 2(85 \text{ GeV})$
- → i.e. we correct invariant masses to mitigate reso. effect from jet SD masses.
 → sharper peaks (see Fig.4).
 → ~3% significance gain.
- From ratio m_{ii}*/m_{iii}* and define 5 bins SR1—5 →
- Effectively binning over m_R.
- In each of these 5 SR we have 2 SRs (SRa, SRb) based on PNet scores.
- Thus, we have 10 SRs.
- We fit the m_{iii}^* spectra.

BKG prediction in 10 SRs

mj_{a(b)}

130

100

70

50

 $\operatorname{Pred}_{\operatorname{SRxy}}^{\operatorname{QCD}} \equiv [\operatorname{Data} - \operatorname{Rest}]_{\operatorname{CRxy}} \frac{2^{\operatorname{CD}}_{\operatorname{SRxy}}}{\operatorname{QCD}_{\operatorname{CRxy}}}$

50

70

100

QCD_{SRxy}

130

mj_{b(a}

CR

SR full selection summary

- 2. p_{Tj1(j2,j3)}>400(200)GeV $|\eta_{i}| < 2.4$,
- $m_{j\alpha,jb} > 50 \text{ GeV},$ 3.
- $H_{\tau} > 1100 \text{ GeV},$ 4.
- 5. $m_{85} < 15$ GeV,
- PNet > 0.8, & binning 6.
- $|\Delta \eta_{ii}|^{max} < 3$ 7.
- 8. $N_{\rm h} = 0$ (CHS, tight, deepflavor)

10 SRs categories:

Region	m_{jj}^*/m_{jjj}^*	s _{jb}
SR1a	< 0.28	> 0.9
SR1b		0.8–0.9
SR2a	0.28-0.43	> 0.9
SR2b		0.8–0.9
SR3a	0.43–0.57	> 0.9
SR3b		0.8–0.9
SR4a	0.57–0.72	> 0.9
SR4b		0.8-0.9
SR5a	> 0.72	> 0.9
SR5b		0.8–0.9

QCD multijet 80-90%

- Dominant \rightarrow data-driven prediction ٠
- Form Control Regions (CRs) defined in $m_{ia,ib}$ sideband as: m_{85} >15 & m_{90} <50 GeV keeping the rest conditions as in SRs.
- Form 10 CRs: CR1–5a & CR1–5b ۲
- Similar kinem/cs to SRs; high QCD purity. •
 - Predict QCD with \rightarrow

•

We validate QCD pred. in 10 VRs (defined by 15<m₈₅<20 GeV).

Top (tt, single t) 3–8% Other (V+jet, VV) 8–16%

- Subdominant BKGs \rightarrow use MC for prediction
- We correct the MC applying SFs for PNet selection eff. per matched $W \rightarrow qq$ jets.
- We validate Top MC (shape & rate) in dedicated samples (bRs) like the SRs but with $N_{\rm h} \ge 1$.
- We assign conservative (large) rate unc. for these 3 BKGs.

Systematic Uncertainties

	Uncertainty source	Effect on	Magnitude	Number of NPs & correlations
	Normalization QCD	Rate	20% 5 0	10, uncorr. across SRs
	Normalization Top	Rate	50%	ant 10, uncorr. across SRs
)	Normalization Other	Rate	30%	10, uncorr. across SRs
	QCD bkg. shape due to m_{90} usage	Shape	$\pm 1\sigma$ templates	10, uncorr. across SRs
	QCD bkg. shape due to other processes	Shape	$\pm 1\sigma$ templates	10, uncorr. across SRs

RATE • QCD 20% based on validation prefit disclosure & MC low stat.

Top 50% based on data in bRs, Other 30% based on similar search.
 All uncorrelated across 10 SRs → 30 nuisances.

SHAPE

- Vary "rest" in QCD BKGs prediction by x2 down, x0 up.
- Shift CR circle center: m_{90} <50 (central) $\rightarrow m_{85}$ <50 (down), m_{95} <50 (up).

PU reweighting & int. luminosityRate 1.7% 1 , correlated across all SRDPDFsRate $\leq 10\%$ 1 , correlated across all SR	
$\overline{\mathbf{O}}$ PDFs Rate $\leq 10\%$ 1, correlated across all SRs	ls
	s *
μ_R/μ_F scales Rate < 0.8% 1, correlated across all SRs	s *
\overline{O} PNet _W selection eff. per jet (event) Rate 6% (12%) $\leq D_{OP}$ 1, correlated across all SR	ls
JEC Shape $\pm 1\sigma$ templates lated across all SRs	s *
JER Shape $\pm 1\sigma$ templates 1, correlated across all SRs	s *

- RATE Lumi, PU, PDFs, QCD scales μ_F , μ_R : 1—10%
 - PNet SFs unc. \rightarrow 6% [12%] per jet [event] (we have 2 W \rightarrow qq jets/event)
- SHAPE JEC & JER: $+\sigma/-\sigma$ variations \rightarrow forming templates per point, per SRs.

16/8/24

Results: SR1a—SR5a

We fit simultaneously the m_{iii}^* spectra in the 10 SRs, using <u>Combine</u> tool:

Results: SR1b—SR5b

We fit simultaneously the m_{iii}^* spectra in the 10 SRs, using <u>Combine</u> tool:

Interpretation: $\sigma B \& m_{gKK} - m_R$ limits

- We set upper limits, at 95% CL, on σB , and lower limits on m_{gKK} - m_R masses plane:
- Expected and observed in agreement within $\sim 0.5\sigma$.

gKK search at CMS, Antonis Agapitos, PKU