

Search for new Higgs bosons via same-sign top quark pair production in association with a jet at CMS 在CMS上通过同号顶夸克+喷注寻找新的希格斯玻色子

Zhengyun YOU(尤郑昀)

Sun Yat-sen University (中山大学)

for the CMS collaboration

youzhy5@mail.sysu.edu.cn

Phys. Lett. B 850 (2024) 138478 arXiv: 2311.03261

中国物理学会高能物理分会第十四届全国粒子物理学术会议 2024年8月16日 山东·青岛

Introduction

- A Higgs boson with mass at 125 GeV/c² has been discovered in 2012
- Yukawa couplings of the Higgs boson to t & b, and τ & μ are consistent with SM
- Is the 125 GeV Higgs boson the only one?
- Two-Higgs-doublet model (2HDM)
 - CP-even neutral scalar bosons h and H with $m_{\rm H}\!>\!\!m_{\rm h}$
 - One CP-odd pseudoscalar boson A
 - Two charged Higgs bosons H^{\pm} scalar boson

G.C. Branco, Phys. Rep. 516 1 (2012) 1 arXiv:1106.0034

- These additional Higgs bosons at mass scales ≤1 TeV may still exist with additional Yukawa couplings hidden by fermion mass-mixing hierarchy
- Because of alignment they may have a negligible impact on the 125 GeV SM-like Higgs boson
- Alignment suppresses Flavor Changing Neutral Higgs (FCNH) interaction of h boson $t \rightarrow ch/uh$, $t \rightarrow \mu \tau/e\tau$, but allows them for the H and A bosons

W.S. Hou, arXiv:2012.05735 arXiv:1706 .07694 Phys. Lett. B 296 (1992) 179

New Yukawa couplings

- The scenario can be studied in the generalized 2HDM (g2HDM)
- With new Yukawa couplings such as $\rho_{\tau\mu}$, ρ_{tu} , ρ_{tc} , ρ_{tt} that may assume significantly large values
 - May also explain the electroweak baryogenesis, and therefore the disappearance of antimatter soon after the Big Bang
 - The new top Yukawa coupling ρ_{tc} with a similar strength to $\rho_{\tau\mu}$ may be compatible with the observed data depending on the H[±] mass, which may also explain a possible muon g-2 anomaly

T.D. Lee, Phys. Rev. D 8 (1973) 1226 G.C. Branco, arXiv:1106.0034 K. Fuyuto, arXiv:1705.05034 K. Fuyuto, arXiv:1910.12404 ATLAS, arXiv:2307.14759 D.P. Aguillard, arXiv:2308.06230

Search for extra Yukawa couplings

- Such Higgs bosons (H or A) are within the reach of the LHC and may be searched for in different channels
- Here we focus on search for the existence of these couplings, ρ_{tu} and ρ_{tc} , through $pp \rightarrow tH/A \rightarrow tt\bar{q} \ (q = u, c)$ ρ_{tc}/ρ_{tu}
 - $\rho_{\rm tc}$ (let $\rho_{\rm tu}$ =0)
 - $\rho_{\rm tu}$ (let $\rho_{\rm tc}$ =0)

• For each coupling, consider with and w/o interference between A and H

Data analysis

Letter

Search for new Higgs bosons via same-sign top quark pair production in association with a jet in proton-proton collisions at $\sqrt{s} = 13$ TeV The CMS Collaboration *

- PP collision at vs=13 TeV
- Run 2 data collected by CMS (2016- 2018, 138 fb⁻¹)
- Signal and backgrounds simulated with MadGraph5_aMC@NLO 2.6.5
- Parton showering, fragmentation, and hadronization with PYTHIA v8.240
- Mass in 200 ~ 1000 GeV assumed for A (H), and a mass too high to be of reach is assumed for H (A)
- Similar work has also been studied in ATLAS

Search for heavy Higgs bosons with flavour-violating couplings in multi-lepton plus b-jets final states in pp collisions at 13 TeV with the ATLAS detector

ATLAS Collaboration

ATLAS, JHEP 12 (2023) 081 arXiv:2307.14759

Analysis strategy

- The final-state signature for the signal $tt\overline{q}$
 - Two same-sign (SS) leptons with at least three jets
 - Two jest identified as b jets and one compatible with originating from u or c

8

M

- Missing transverse momentum (MET) by v_l
- Main background
 - Electrons from photon conversions
 - Jets misidentified as leptons
 - Hadrons misidentified as leptons
 - Non-prompt leptons from leptonic decays of heavy quarks

MET

Event selection

- Signal region definition
 - Only two "Tight" leptons with SS, veto events
 if a third "Loose" lepton
 - Leading lepton pT > 30 GeV
 - Sub-leading lepton pT > 20 GeV
 - $\Delta R(l_1, l_2) > 0.3$
 - $m(l_1, l_2) > 20 \text{ GeV}$
 - − Veto events with m(l_+ , l_-) ∈(60,120) GeV in ee channel
 - MET > 30 GeV
 - At least three tight jet (no tagger here)

Table 1

Input variables of the BDT. Jets and leptons are ordered by $p_{\rm T}$.

Input variables of the BDT					
$\operatorname{CvsL}(j_a)$	a = 1, 2, 3	Charm- vs light-quark jet identification variable			
$CvsB(j_a)$	a = 1, 2, 3	Charm- vs bottom-quark jet identification variable			
$\Delta R(j_a, j_b)$	$1 \le a < b \le 3$	Angular separation between jets			
$m(j_a, j_b)$	$1 \le a < b \le 3$	Invariant mass of jet pairs			
$\Delta R(j_a, l_b)$	a = 1, 2, 3; b = 1, 2	Angular separation between jet and lepton			
$m(j_a, l_b)$	a = 1, 2, 3; b = 1, 2	Invariant mass of jet-lepton pairs			
$p_{\mathrm{T}}(\ell_a)$	a = 1, 2	Transverse momentum of leptons			
$m(\ell_1, \ell_2, j_a)$	a = 1, 2, 3	Invariant mass of the two leptons plus the highest $p_{\rm T}$ jet			
$m(\ell_1, \ell_2)$		Invariant mass of the two leptons			
$H_{ m T}$		Scalar $p_{\rm T}$ sum of the jets			
$p_{\mathrm{T}}^{\mathrm{miss}}$		Missing transverse momentum			

Signal Extraction with BDT

Background estimation and systematic uncertainties

- Search performed in three SS dilepton categories: $e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$
- Fake rates applied on the fakeable events constructed from data

Uncertainty source	Shape	Category		Correlated across		
		$e^{\pm}e^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}\mu^{\pm}$	Years	Categories
Experimental						
Luminosity	_	1.2 - 2.5	1.2 - 2.5	1.2 - 2.5	1	1
Pileup	1	< 0.1-2.8	< 0.1-1.8	< 0.1-2.3	1	1
Trigger efficiency	1	0.4-2.6	0.2 - 1.1	0.3-1.2	_	_
L1 trigger inefficiency	1	0.1 - 0.8	0.1-0.3	0.1-0.4	1	1
Lepton identification	1	0.1 - 1.7	<0.1-0.4	<0.1-0.6	_	1
Lepton energy scale	1	_	< 0.1-0.2	< 0.1-0.2	_	1
Charge misid.	1	1.2-13.1	_	_	_	_
Jet energy scale	1	<0.1-4.5	< 0.1-1.7	< 0.1-1.5	1	1
Jet energy resolution	1	<0.1-2.6	< 0.1-1.8	< 0.1-1.6	_	1
Unclustered energy	1	<0.1-2.6	<0.1-0.5	<0.1-0.8	_	1
Jet flavor identification	1	< 0.1-12.1	<0.1-8.8	<0.1-11.6	1	1
Nonprompt lepton BG						
statistical component	1	< 0.1-27.2	1.9 - 16.2	3.0-13.2	_	1
Nonprompt lepton BG	_	27,15,11,10	27,15,11,10	27,15,11,10	_	1
m1 1						
Theoretical	,	100 105	10.0.10.0	0.0.10.0	,	,
Signal QCD scales	~	10.3–10.5	10.0–10.2	9.9–10.0	v	
Signal PDF	~	0.7	0.6–0.7	0.5–0.6	/	v
Signal parton shower	~	3.6–4.3	4.0–4.3	6.3–7.3	1	1
tī	—	6.1	6.1	6.1	\checkmark	1
VV	—	4.5	4.5	4.5	1	1
VBS	_	10.4	10.4	10.4	\checkmark	1
tīH	_	7.8	7.8	7.8	1	1
t Ī W	_	10.7	10.7	10.7	1	1
Other backgrounds	_	5.4	5.4	5.4	1	1

Post-fit BDT for signal extraction

Upper limits on signal strength

Upper limits on signal strength (interference)

Table 3

Observed (expected) lower limits on m_A at 95% CL. For the scenario without interference, the limits on m_H and m_A are the same.

Observed (expected) mass limit [GeV]						
	without interference	with interference	with interference			
	$m_{\rm A}$ or $m_{\rm H}$	m _A	$m_{ m H}$			
$\rho_{\rm tu}$		1000 (1000)				
0.4	920 (920)	1000 (1000)	950 (950)			
1.0	1000 (1000)	1000 (1000)	950 (950)			
$ ho_{ m tc}$						
0.4	no limit	340 (370)	290 (320)			
1.0	770 (680)	810 (670)	760 (620)			

Signal strength with different $\,
ho_{
m tu}$

Signal strength with different $\,
ho_{
m tc}$

Coupling strength vs m_A exclusion upper limit

- A search for extra Higgs bosons in $tt\bar{q}$ (q = u, c) final states is performed with CMS Run2 data
- No significant excess above the background prediction is observed
- Exclude almost all the phase space for $\rho_{tu} \ge 0.4$ and a significant portion for $\rho_{tc} \sim 1.0$ (with the interference case having stronger limits)
- The results represent the first search based on g2HDM considering ρ_{tu} and ρ_{tc} extra Yukawa couplings independently, and also first to consider m_A-m_H interference at the LHC.

