

Combination of searches for heavy spin-1 resonances with the ATLAS detector

Rui Yuan

中国物理学会高能物理分会第十四届全国粒子物理 学术会议, Qingdao

2024.08.16

Overview

Signal model

 A phenomenological Heavy Vector Triplet (HVT) model with nearly degenerate W'/Z' and SM couplings as free parameters

$$\mathcal{L}_{\mathcal{W}}^{\text{int}} = -g_q \mathcal{W}_{\mu}^a \bar{q}_k \gamma^{\mu} \frac{\sigma_a}{2} q_k - g_\ell \mathcal{W}_{\mu}^a \bar{\ell}_k \gamma^{\mu} \frac{\sigma_a}{2} \ell_k - g_H \left(\mathcal{W}_{\mu}^a H^{\dagger} \frac{\sigma_a}{2} i D^{\mu} H + \text{h.c.} \right)$$

- Three typical models in two production modes:
 - $q\overline{q}$ production
 - Model A: weakly-coupled scenario, g_H = -0.56, g_f = -0.55
 - Model B: strongly-coupled scenario, $g_H = -2.9$, $g_f = 0.14$
 - VBF production
 - Model C: g_H = 1, g_f = 0

- Most signal samples: MG5_aMC@NLO+Py8
- Mass points of the signal samples are shown below

Combination analysis strategy

- Check the orthogonality among those analysis signal regions
 - A series of operations are applied to reduce the overlap
- Combine analyses
- Set limits in 1D and 2 D
 - 1D: exclusion of cross section as function of $m_{V'}$
 - 2D: coupling planes
 - $\{g_H, g_f\}, \{g_q, g_l\}$
 - $\{g_H, g_{q3}\}, \{g_{q3}, g_{l3}\}, \{g_{q12}, g_{q3}\}$

Event selection

Analysis	Leptons	$E_{\rm T}^{\rm miss}$	Jets	b-tags	Top-tags	VBF	Discr.	Ref.
$WW/WZ \rightarrow qqqq$	0	Veto	$\geq 2J$	-	-	-	m_{VV}	[9]
$WW/WZ \rightarrow \ell \nu q q$	$1e,1\mu$	Yes	${\geq}2j,{\geq}1J$	0,1,2	-	Yes	m_{VV}	[10]
$WZ \to qq\nu\nu$	0	Yes	$\geq 1 J$	0	-	Yes	m_{VV}	[10]
$WZ \to qq\ell\ell$	$2e, 2\mu$	-	${\geq}2j,{\geq}1J$	0	-	Yes	m_{VV}	[10]
$WZ \to \ell \nu \ell \ell$	$3\subset (e,\mu)$	Yes	-	0	-	Yes	m_{VV}	[11]
$WH/ZH \rightarrow qqbb$	0	Veto	$\geq 2J$	1, 2	-	-	m_{VH}	[12]
$ZH \rightarrow \nu \nu bb$	0	Yes	$\geq 2j, \geq 1J$	1, 2	-	-	m_{VH}	[13]
$WH \to \ell \nu bb$	$1e,1\mu$	Yes	$\geq 2j, \geq 1J$	1, 2	-	-	m_{VH}	[13]
$ZH ightarrow \ell\ell bb$	$2e,2\mu$	Veto	$\geq 2j, \geq 1J$	1, 2	-	-	m_{VH}	[13]
$\ell \nu$	$1e, 1\mu$	Yes	-	-	-	-	$m_{ m T}$	[15]
au u	1τ	Yes	-	-	-	-	$m_{ m T}$	[16]
$\ell\ell$	$\geq 2e, \geq 2\mu$	-	-	-	-	-	$m_{\ell\ell}$	[14]
au au	$0,1e,1\mu$	Yes	-	$0, \geq 1$	-	-	$m_{ au au}$	[17]
tt0L	0	-	2J	1, 2	2	-	m_{tt}	[19]
m tb0L	0	-	\geq (1j+1J)	≥ 1	1	-	m_{tb}	[20]
tb1L	$1e,1\mu$	Yes	2j, 3j	1, 2	-	-	m_{tb}	[20]
qq	0	-	2j	0	-	-	m_{jj}	[18]
bb	0	-	2j	1, 2	-	-	m_{bb}	[18]

Generally orthogonal

Orthogonality

- Use MC sample to check the orthogonality
- The contents of each cell indicate the percentage of MC events common to the analysis selection of each corresponding row and column (y/x).

Orthogonality

- Minimal additional requirements are applied to achieve orthogonality
- Complementary kinematic cuts are applied
- An analysis priority order is established to preferentially remove
- Only in signal regions

Analysis	Original Selection	Additional Selection
$VH \rightarrow vvbb$	m(jj) or m(J) window	m(jj) > 100 GeV
$VH \rightarrow \ell \nu bb$	m(jj) or m(J) window	m(jj) > 106 GeV
$VH \rightarrow \ell\ell bb$	m(jj) or m(J) window	m(jj) > 100 GeV
$VH \rightarrow qqbb$	$p_T(J)$ dependent	m(J) > 106 GeV
tb0L	-	Second W and top-tag veto
tb1L	-	Second W and top-tag veto
qq	-	Remove overlapping events
bb	-	Remove overlapping events

Systematics

- Experimental systematic uncertainties are correlated in different channels if they are exactly same, otherwise treated as uncorrelated
- Theoretical uncertainties are treated correlated or not should depend on the process
- Systematic uncertainties weaken the upper limit on the cross-section by up to 20%

Systematic Source	$WW(\ell)$	$v\ell v$) $WW(\ell v q$	$(q)WZ(\ell\ell qq)$	$WZ(\nu\nu qq)$	$WZ(\ell\ell\ell\nu)$	$WH(\ell)$	vbb) WH(vvbb) <i>lv</i>	$\tau \nu$	$\tau \tau$	qq	tt1L	tt2L	tb0L	tb1L
Small-R jet energy resolution	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B
Small-R jet energy scale	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B
Small- <i>R</i> jet flavor	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B		S+B	S+B	S+B	S+B
Small-R jet pileup	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B			S+B	S+B	S+B	S+B
Small-R jet punch-through	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B			S+B	S+B	S+B	S+B
Small- <i>R</i> jet JVT	S+B	S+B	S+B	S+B	S+B	S+B	S+B	S+B				S+B	S+B	S+B	S+B
					\										
Systematic Source	<u>ا</u>	$WW(\ell \nu \ell \nu)$	$WW(\ell \nu q)$	$q)WZ(\ell\ell q)$	(qq) WZ($(\ell\ell\ell\nu)$	$WH(\ell vbb)$	$ZH(\ell)$	ťbb)	ll	ťν	tt1L	_ ti	t2L	tb1L
Electron energy resolution		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B	S+B	S	S+B	
Electron energy scale		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B	S+B	S	S+B	S+B
Electron identification		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B	S+B	S	S+B	S+B
Electron reconstruction		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B				
Electron isolation		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B				
Electron trigger		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B				
Muon momentum resolution	on	S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B	S+B	S	S+B	S+B
Muon momentum scale		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B	S+B	S	S+B	S+B
Muon reconstruction		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B	S+B	S	S+B	
Muon isolation		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B				
Muon trigger		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B	S+B	S	S+B	
Muon Sagitta		S+B	S+B	S+B	S+I	В	S+B	S+B		S+B	S+B	S+B	S	S+B	S+B

1D Result: Model A&B

	Channel	HVT model A	exclusion limit	HVT model B exclusion limit		
	Unamer	Observed [TeV]	Expected $[\text{TeV}]$	Observed [TeV]	Expected [TeV]	
	VV	4.1	4.0	4.3	4.2	
	VH	3.6	3.5	3.9	3.9	
	Bosonic	4.3	4.1	4.4	4.4	
	Leptonic	5.8	5.6	3.2	2.7	
No significant evenes is absented	Quarkonic	4.1	3.8	-	-	
No significant excess is observed	Full combination	5.8	5.6	4.4	4.4	

1D Result: VBF

2D Result: Bosonic subcombination

2D Result: Quarkonic subcombination

- Combination of searches for heavy spin-1 resonances analysis is done by using ATLAS full Run-II $139 f b^{-1}$ data
 - Include 18 final states
- No significant excess is observed
- HVT models are used for interpretation
 - 1D limits: m_V , is excluded up to 5.8 TeV and 4.4 TeV for Model A and B respectively, for Model C, results for several g_H choices are shown
 - 2D limits: multiple 2D planes explored

Backup

2D Result: Leptonic subcombination

Тоу

21

P-value

