The (semi-)leptonic decays of charmed mesons at BESIII

潘祥

苏州大学

BESIII experiment

2 Main goal

BESIII dataset and double-tag method

4 Leptonic decays

- 5 Semileptonic decays
- 6 Summary and prospect

(4回) (4回) (4回)

BESIII experiment

- $\sqrt{s} = (1.85 4.95) \text{ GeV}$
- Peak luminosity: $1.1{\times}10^{33}~{\rm cm}^{-2}{\rm s}^{-1}$ @3.773 GeV
- MDC: $\sigma_P/P = 0.5\%$ @ 1 GeV; $\sigma_{dE/dx} = 6\%$

- TOF: $\sigma_T = 68(110)$ ps for barrel (endcap); endcap upgraded in 2015 $\sigma_T = 60$ ps
- EMC: $\sigma_E/E = 2.5\%(5\%)$ for barrel (endcap)

イロト イポト イヨト イヨト

Main goal

Main goal

$$\Gamma = rac{\mathsf{G}_{\mathsf{F}}^2}{8\pi} |\mathbf{V_{cq}}|^2 |f_{D^+_{(s)}}|^2 m_\ell^2 m_{D^+_{(s)}} \left(1 - rac{m_\ell^2}{m_{D^+_{(s)}}^2}
ight)^2$$

$$rac{d\Gamma}{dq^2} = X rac{G_F^2 |ec{
ho}_P|^3}{24\pi^3} |V_{cq}|^2 |f_+(q^2)|^2$$

• Leptonic and semileptonic D decays are the most important way to determine $|V_{cd(s)}|$

- Latest LQCD: $f_{D_s^+} = 249.9(05)$ MeV ($\sigma = 0.2\%$), $f_{D^+} = 212.1(07)$ MeV ($\sigma = 0.3\%$), $f_+^{D \to K}(0) = 0.7452(31)$ ($\sigma = 2.4\% \to 0.4\%$), $f_+^{D \to \pi}(0) = 0.6300(51)$ ($\sigma = 4.4\% \to 0.8\%$)
- Decay constant $\mathit{f}_{D^+_{(s)}}$ and FF $\mathit{f}_+(0)$ measurements \Rightarrow Calibrate LQCD calculations

0

• BF ratios \Rightarrow Test lepton flavor universality (LFU)

BESIII dataset and double-tag method

- $D^{0(+)}$ meson: $e^+e^- \rightarrow \psi(3770) \rightarrow D\bar{D}$ @3.773 GeV $\mathcal{L}_{int} = (2.932 + 4.995 + 8.157 + 4.191)$ fb⁻¹=20.27 fb⁻¹
- D_s^+ meson:
 - $e^+e^-
 ightarrow D_s^{\pm} D_s^{*\mp}$ @4.128-4.226 GeV, \mathcal{L}_{int} =7.33 fb⁻¹ $e^+e^-
 ightarrow D_s^{*+} D_s^{*-}$ @4.237-4.669 GeV, \mathcal{L}_{int} =10.64 fb⁻¹
- Advantages: Clean, double tag method
- Single-tag yields in data:
- 2.93 fb⁻¹ (7.9 fb⁻¹) (20.27 fb⁻¹) data $N_{ST}^{\bar{D}^0} \sim 2.4M$ (6.6M) (16.9M) with 3 golden tags $N_{ST}^{D^-} \sim 1.6M$ (4.3M) (11.0M) with 6 golden tags • 7.33 fb⁻¹ (10.64 fb⁻¹) data

 $N_{
m ST}^{D_s^-} \sim 0.8$ M (0.12M) with 16 possible tags

- $\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) =$ (5.294 ± 0.108 ± 0.085) × 10⁻³
- $f_{D_s^+} = (248.4 \pm 2.5 \pm 2.2) \text{ MeV}$
- $|V_{cs}| = 0.968 \pm 0.010 \pm 0.009$ Highest precision to date $\sim 1.4\%$

- $\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau) = (5.37 \pm 0.17 \pm 0.15)\%$
- $f_{D_c^+} = (253.4 \pm 4.0 \pm 3.7)$ MeV
- $|V_{\rm cs}| = 0.987 \pm 0.016 \pm 0.014$ Precision $\sim 2.2\%$

- Boosted decision tree method
- $\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau) = (5.44 \pm 0.17 \pm 0.13)\%$
- $f_{D_s^+} = (255.0 \pm 4.0 \pm 3.4) \text{ MeV}$
- $|V_{cs}| = 0.993 \pm 0.015 \pm 0.013$ Precision ~ 2.0%

潘祥 (苏州大学)

(Semi)leptionic D decays

$D_s^{*+} ightarrow e^+ u_e$ and $D^{*+} ightarrow \ell^+ u_\ell$

• First experimental study of the $D_{(s)}^{*+}$ purely leptonic decay

- $\mathcal{B}(D_s^{*+} \to e^+ \nu_e) = (2.1^{+1.2}_{-0.9} \pm 0.2) \times 10^{-5}$
- $\Gamma_{D_s^{*+}}^{\text{total}} = 70 \pm 28 \text{ eV (LQCD)} \Rightarrow f_{D_s^{*+}} = (214^{+61}_{-46} \pm 44) \text{ MeV}$
- $f_{D_s^{*+}}/f_{D_s^{+}} = 1.12 \pm 0.01 \text{ (LQCD)} \Rightarrow \Gamma_{D_s^{*+}}^{\text{total}} = (122^{+70}_{-52} \pm 12) \text{ eV}$
- Indirectly constrains the upper limit on the Γ^{total}_{D^{s+}_s} from the MeV (<1.9 MeV@90% C.L. PDG2024) to sub-keV level

- Upper limits are set at 90% C. L.
- $\mathcal{B}(D^{*+} \to e^+ \nu_e) < 1.1 \times 10^{-5}$
- $\mathcal{B}(D^{*+} \to \mu^+ \nu_\mu) < 4.3 \times 10^{-6}$

イロト 不得下 イヨト イヨト

Summary of leptonic D_s decays

ETM(2+1+1) PRD91(2013)054507 FMILC(2+1+1) PRD98(2018)074512 FLAG21(2+1+1) EPJC82(2022)869	247.2±4.1 ↔ 249.9±0.4 249.9±0.5	CKMFitter PTEP2022(2022)083C01 HFLAV21 PRD107(2023)052008	0.97349±0.00016 0.9701±0.0081
HFLAV21 PRD107(2023)652008 CLEO PRD79(2009)652002, typ CLEO PRD79(2009)652001, typ Balar PRD79(2009)652001, typ Belle PRD79(2009)652001, typ Belle PRD79(2009)652001, typ Belle PRD19(2009)652001, typ BESHI 6.32 Pd PRD19(2020)102001, typ BESHI 6.32 Pd PRD19(2020)12001, typ BESHI 6.32 Pd PRD19(2020)12014, typ BESHI 6.32 Pd <	252.2±2.5 251.8±11.2±5.3 257.0±13.3±5.0 277.1±17.5±4.0 244.6±8.6±12.0 244.6±8.6±2.0 254.4±6.9±4.0 254.6±6.9±4.0 255.0±4.0±3.1 255.0±5.0±5.0±5.0±5.0±5.0±5.0±5.0±5.0±5.0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.981±0.044±0.021 ••• 1.001±0.052±0.019 ••• 1.079±0.068±0.016 ••• 0.953±0.033±0.047 •••• 1.017±0.019±0.028 ••• 0.972±0.023±0.016 •• 0.978±0.009±0.012 •• 0.978±0.009±0.012 •• 0.978±0.06±0.014 •• 1.011±0.014±0.018 ••
Basint 0.482 (http://basintec.up/basintec.	255.917 8±5.11 → → → → → → → → → → → → → → → → → →	CLEO PRD97(2009062001, µv) BuBar PRD82(2010)091103, µv Belle JHE599(2013)139, µv BESITI 0.482 Dr PRD94(2016)72064, µv BESITI 0.482 Dr PRD94(2016)72064, µv BESITI 0.482 Dr PRD104(2016)72064, µv BESITI 0.482 Dr PRD104(2023)112001, µv BESITI 1.43 Dr PRD104(2023)112001, µv BESITI 1.064 Dr wrXv2407.11727, µv, Dr [*] ₂ Dr [*] ₀	1.000±0.040±0.016 +++ 1.032±0.033±0.029 +++ 0.090±0.026±0.019 ++ 0.956±0.069±0.020 +++ 0.956±0.069±0.020 +++ 0.968±0.010±0.009 + 0.968±0.012±0.015 + 0.968±0.012±0.014 ++ 0.968±0.016±0.0071 +++ 0.968±0.016±0.0071 +++ 0.968±0.016±0.0071 ++++ 0.968±0.016±0.0071 +++++++++++++++++++++++++++++++++++
$\begin{array}{c} \begin{array}{c} \text{BESIII Combined} & \text{iv} \\ \text{BESIII Combined} & \text{iv} + \mu \text{v} \\ \end{array} \\ \begin{array}{c} 0 \\ \text{f} \end{array} \\ \begin{array}{c} 100 \\ \text{f} \end{array} \\ \end{array}$	$\frac{253.33\pm1.34\pm1.32}{252.08\pm1.34\pm1.32} = \sigma = 0.9\%$	BESIII Combined τν BESIII Combined τν + μν -1	0.9892±0.0060±0.0071 0.9820±0.0052±0.0071 0.1

• Averaged BESIII results, precisions of f_{D_s} and $|V_{\rm cs}|$: 0.9%

• $\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (0.5310 \pm 0.0099 \pm 0.0053)\%$ and $\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau) = (5.359 \pm 0.067 \pm 0.074)\%$ $\mathcal{R}(\tau/\mu) = 10.09 \pm 0.28 \ (\sigma \sim 2.8\%)$, consistent within SM (9.75±0.01) 1.2 σ

潘祥 (苏州大学)

(Semi)leptionic D decays

$$D^+_s o \eta^{(\prime)} e^+
u_e$$
 and $D^+_s o \eta^{(\prime)} \mu^+
u_\mu$

Precision of BFs and FFs are improved by a factor of ~1.4

 $\mathcal{B}(D_s^+ \to \eta e^+ \nu_e) = (2.255 \pm 0.039 \pm 0.051)\%$ $\mathcal{B}(D_s^+ \to \eta' e^+ \nu_e) = (0.810 \pm 0.038 \pm 0.024)\%$

- $f^{\eta}_{+}(0) = 0.4642 \pm 0.0073 \pm 0.0066$ $f^{\eta'}_{+}(0) = 0.540 \pm 0.025 \pm 0.009$
- $\eta \eta'$ mixing angle $\phi_P = (40.0 \pm 2.0 \pm 0.6)^\circ$

$D_s^+ o \eta^{(\prime)} \mu^+ u_\mu$ PRL132(2024)091802

- Precision of BFs are improved by a factor of ~6 $\mathcal{B}(D_s^+ \to \eta \mu^+ \nu_\mu) = (2.235 \pm 0.051 \pm 0.052)\%$
- $\mathcal{B}(D_s^+ \to \eta' \mu^+ \nu_\mu) = (0.801 \pm 0.055 \pm 0.028)\%$ • First extraction of the FFs via semimuonic decays
 - $f^{\eta}_{+}(0) = 0.465 \pm 0.010 \pm 0.007; \ f^{\eta'}_{+}(0) = 0.518 \pm 0.038 \pm 0.012$
- Most precision test of lepton flavor universality in D_s sector

$$\mathcal{R}^{\eta}_{\mu/e} = 0.991 \pm 0.029 \pm 0.016; \ \mathcal{R}^{\eta'}_{\mu/e} = 0.988 \pm 0.082 \pm 0.031$$

• First extraction of the forward-backward asymmetry parameters $\langle A_{\rm FB}^{\eta} \rangle = -0.059 \pm 0.031 \pm 0.005; \langle A_{\rm FB}^{\eta'} \rangle = -0.064 \pm 0.079 \pm 0.006$

 $D_s^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$ and $D^+ \rightarrow \pi^+ \pi^- \ell^+ \nu_\ell$

- $\mathcal{B}(D_s^+ \to f_0(980)_{\pi^+\pi^-}e^+\nu_e) =$ (1.72 ± 0.13 ± 0.10) × 10⁻³ = 4.22 × 10⁻³ cos² ϕ
- $q\bar{q}$ mixing angle: $\sin \phi (1/\sqrt{2})(u\bar{u} + d\bar{d}) + \cos \phi s\bar{s}$ $\phi = (19.7 \pm 12.8)^{\circ} \Rightarrow s\bar{s}$ component dominates
- $f_{\pm}^{D_s^+ \to f_0(980)}(0) = 0.518 \pm 0.018 \pm 0.036$
- $\mathcal{B}(D_s^+ \to f_0(500)_{\pi^+\pi^-} e^+ \nu_e) < 3.3 \times 10^{-4}$ @90% C. L.

 $D_s^+
ightarrow K^+ K^- \mu^+
u_\mu$ and $D
ightarrow K K e^+
u_e$

• $\mathcal{B}(D_s^+ \to \phi \mu^+ \nu_\mu) = (2.25 \pm 0.09 \pm 0.07)\%$, precision improved by 4.3

- Assume S-wave is $f_0(980)$: $\mathcal{B}(D_s^+ \to f_0(980)\mu^+\nu_{\mu}, f_0(980) \to K^+K^-) < 5.45 \times 10^{-4}$ @90% C. L.
- $\mathcal{R}^{\phi}_{\mu/e} = 0.94 \pm 0.08$ • $r_V = \frac{V(0)}{A_1(0)} = 1.58 \pm 0.17 \pm 0.02, r_2 = \frac{A_2(0)}{A_1(0)} = 0.71 \pm 0.14 \pm 0.02$

7.9 fb⁻¹@3.773 GeV PRD109(2024)072003

 $D^+ \rightarrow K^0_S \pi^0 e^+ \nu_e$ and $D^0 \rightarrow K^- \pi^0 \mu^+ \nu_\mu$

• $\mathcal{B}(D^+ \to K_5^0 \pi^0 e^+ \nu_e) = (0.881 \pm 0.017 \pm 0.016)\%$ $\mathcal{B}(D^+ \to \bar{K}^* (892)^0 e^+ \nu_e) = (4.97 \pm 0.11 \pm 0.12)\%$ • $r_V = \frac{V(0)}{A_1(0)} = 1.43 \pm 0.07 \pm 0.03$ $r_2 = \frac{A_2(0)}{A_1(0)} = 0.72 \pm 0.06 \pm 0.02$

• Precision of BF is improved by a factor of 5 $\mathcal{B}(D^0 \to K^- \pi^0 \mu^+ \nu_\mu) = (0.729 \pm 0.014 \pm 0.011)\%$ $\mathcal{B}(D^0 \to K^* (892)^- \mu^+ \nu_\mu) = (2.062 \pm 0.039 \pm 0.032)\%$ • $r_V = \frac{V(0)}{A_1(0)} = 1.37 \pm 0.09 \pm 0.03$ $r_2 = \frac{A_2(0)}{A_1(0)} = 0.76 \pm 0.06 \pm 0.02$ • $\frac{\mathcal{B}(D^0 \to K^* (892)^- \mu^+ \nu_\mu)}{\mathcal{B}(D^0 \to K^* (892)^- e^+ \nu_e)} = 0.96 \pm 0.08$, agree with LFU

$$D^+_s o {\it K}^0 e^+
u_e$$
 and $D^+_s o {\it h} e^+
u_e$

- Precision of BF is improved by a factor of 1.6 $\mathcal{B}(D_s^+ \to K^0 e^+ \nu_e) = (2.93 \pm 0.23 \pm 0.12) \times 10^{-3}$
- Precision of FF is improved by a factor of 1.7 $f_{\pm}^{K^0}(0) = 0.636 \pm 0.049 \pm 0.013$

10.64 fb⁻¹@4.237-4.699 GeV arXiv:2406.01332

$D_{(s)} ightarrow K_1(1270) e^+ u_e$ and $D_{(s)} ightarrow b_1(1235) e^+ u_e$

- Dominated by $K_1(1270)$
- $\mathcal{B}(D^0 \to K_1(1270)^- e^+ \nu_e) = (1.05^{+0.33}_{-0.28} \pm 0.17) \times 10^{-3}$
- $\mathcal{B}(D^+ \to \bar{K}_1(1270)^0 e^+ \nu_e) = (1.29^{+0.40}_{-0.35} \pm 0.23) \times 10^{-3}$

- $\mathcal{B}(D^0 \to b_1(1235)^-|_{\omega\pi^-} e^+ \nu_e) = (0.72 \pm 0.18^{+0.06}_{-0.08}) \times 10^{-4}$
- $\mathcal{B}(D^+ \to b_1(1235)^0|_{\omega\pi^0} e^+ \nu_e) = (1.16 \pm 0.44 \pm 0.16) \times 10^{-4}$
- $\begin{array}{l} \frac{\Gamma(D^0 \rightarrow b_1^- e^+ \nu_e)}{2\Gamma(D^+ \rightarrow b_1^0 e^+ \nu_e)} = 0.78 \pm 0.19 \pm 0.05, \\ \text{consistent with isospin} \end{array}$

- Upper limits are set at 90% C. L.
- $\mathcal{B}(D_s^+ \to b_1(1235)^0|_{\omega\pi^0} e^+ \nu_e) < 6.4 \times 10^{-4}$
- $\mathcal{B}(D_s^+ \to K_1(1270)^0 e^+ \nu_e) < 4.1 \times 10^{-4}$

Summary and prospect

	Current precision (%)			Expected precision (%)		
Channel	$f_{D_s^+}$	$ V_{\rm cs} $	$\mathcal{R}(au/\mu)$	$f_{D_s^+}$	$ V_{\rm cs} $	$\mathcal{R}(au/\mu)$
$D_s^+ o \mu^+ u_\mu$	1.09	1.09	2.8	0.97	0.97	2.5
$D_s^+ \to \tau^+ \nu_{\tau}$	0.94	0.94		0.88	0.88	
Channel	Form factor	$ V_{\rm cs} $	$\mathcal{R}(\mu/e)$	Form factor	$ V_{\rm cs} $	$\mathcal{R}(\mu/e)$
$D^0 ightarrow K^- e^+ u_e$	0.60	0.73	1.42	0.50	0.66	1.26
$D^0 o K^- \mu^+ u_\mu$	0.66	0.79		0.45	0.63	
$D_s^+ \to \eta e^+ \nu_e$	2.1	6.4	3.3	1.9	6.3	2.9
$D_s^+ o \eta \mu^+ \nu_\mu$	2.6	6.6		2.4	6.5	
Channel	f_{D^+}	$ V_{ m cd} $	$\mathcal{R}(au/\mu)$	f_{D^+}	$ V_{\rm cd} $	$\mathcal{R}(au/\mu)$
$D^+ ightarrow \mu^+ u_\mu$	2.8	2.8	24	1.3	1.3	15
$D^+ ightarrow au^+ u_ au$	11.3	11.3	24	6.4	6.4	15
Channel	Form factor	$ V_{\rm cd} $	$\mathcal{R}(\mu/e)$	Form factor	$ V_{\rm cd} $	$\mathcal{R}(\mu/e)$
$D^0 ightarrow \pi^- e^+ u_e$	1.43	1.60	4.0	0.84	1.11	28
$D^0 o \pi^- \mu^+ u_\mu$	-	-	4.0	-	-	2.0

Expected precision with 20.27 fb⁻¹@3.773 GeV (ready now) and another 3 fb⁻¹@4.178 GeV (plan) New and more procision (semi-)leptonic decays will be explored

潘祥 (苏州大学)

Thanks for your attention

э

イロト イヨト イヨト