

The photoproduction of P_c in $\gamma p \rightarrow J/\psi p$ and the feed down phenomenon of P_c

段鸣晓(Ming-Xiao Duan) 合作者:邱林、赵强

Institute of High Energy Physics

August 13, 2024 to August 18, 2024 山东•青岛

第十四届全国粒子物理学术会议

Content

- I. A brief Introduction of the J/\psi photoproduction from GluX.
- II. The photoproduction of the P_c in our formalism.
- **III.** Numerical results.
- IV. The feed down phenomenon of P_c .
- V. Summary.

Measurements on $\gamma p \rightarrow J/\psi p$

Analysis on $\gamma p \rightarrow J/\psi p$

$$\begin{split} &\int dq_1^4 e^{-\frac{2|\mathbf{q}_1|^2}{\Lambda^2}} / (q_1^2 - m_{q_1}^2 + i\varepsilon) (q_2^2 - m_{q_2}^2 + i\varepsilon) \\ &\approx \frac{1}{4m_{q_1}m_{q_2}} \int dq_1^0 d\mathbf{q}_1^3 \frac{e^{-\frac{2|\mathbf{q}_1|^2}{\Lambda^2}}}{(q_1^0 - m_{q_1} - \frac{|\mathbf{q}_1|^2}{2m_{q_1}} + i\varepsilon)(\sqrt{s} - q_1^0 - m_{q_2} - \frac{|\mathbf{q}_2|^2}{2m_{q_2}} + i\varepsilon)} \\ &= \frac{2\pi i}{4m_{q_1}m_{q_2}} \int d\mathbf{q}_1^3 \frac{e^{-\frac{2|\mathbf{q}_1|^2}{\Lambda^2}}}{\sqrt{s} - m_{q_1} - m_{q_2} - \frac{|\mathbf{q}_1|^2}{2m_{q_1}} - \frac{|\mathbf{q}_2|^2}{2m_{q_2}}} \\ &= \frac{i(2\pi)^3}{4m_{q_1}m_{q_2}} \left[\frac{\mu\Lambda}{\sqrt{2\pi}} + \mu k e^{-2k^2/\Lambda^2} (-erfi[\frac{\sqrt{2}k}{\Lambda}] + i) \right]. \end{split}$$

$$\begin{split} \mathcal{L}_{J/\psi p\Lambda_{c}\bar{D}^{(*)}} &= ig_{x}\psi^{\nu}\bar{N}\gamma_{5}\gamma_{\mu}\Lambda_{c}\bar{D} + g_{x^{*}}\bar{N}\Lambda_{c}\psi^{\nu}D_{\mu}^{*} \\ \mathcal{L}_{VMD} &= -\frac{em_{J/\psi}^{2}}{f_{J/\psi}}V\cdot A \\ \mathcal{M}_{\Lambda_{c}\bar{D}} &= \int \frac{dq_{1}^{4}}{(2\pi)^{4}}ig_{x}^{2}\frac{eM_{J/\psi}^{2}}{f_{J/\psi}}\bar{u}_{p}(p_{4},m_{4})\gamma_{5}\gamma_{\mu}(q_{1}+m_{1}) \\ &\times \gamma_{\nu}\gamma_{5}u_{p}(p_{2},m_{2})\varepsilon_{J/\psi}^{*\mu}(p_{3},m_{3})\varepsilon_{\gamma\alpha}(p_{1},m_{1}) \\ &\times \frac{g^{\nu\alpha}\mathcal{F}^{2}(q1^{2},\Lambda^{2})}{(q_{1}^{2}-m_{q_{1}}^{2})(q_{2}^{2}-m_{q_{2}}^{2})(p_{1}^{2}-m_{J/\psi}^{2})}, \\ \mathcal{M}_{\Lambda_{c}\bar{D}^{*}} &= \int \frac{dq_{1}^{4}}{(2\pi)^{4}}ig_{x}^{2}\frac{eM_{J/\psi}^{2}}{f_{J/\psi}}\bar{u}_{p}(p_{4},m_{4})(q_{1}+m_{q_{1}})u_{p}(p_{2},m_{2}) \\ &\times (-g^{\mu\nu}+\frac{q_{2}^{\mu}q_{2}^{\nu}}{m_{D^{*}}^{2}})\varepsilon_{J/\psi\mu}^{*}(p_{3},m_{3})\varepsilon_{\gamma}^{\alpha}(p_{1},m_{1}) \\ &\times \frac{g_{\nu\alpha}\mathcal{F}^{2}(q1^{2},\Lambda^{2})}{(q_{1}^{2}-m_{q_{1}}^{2})(q_{2}^{2}-m_{q_{2}}^{2})(p_{1}^{2}-m_{J/\psi}^{2})}. \end{split}$$

$$\mathcal{L} = g\bar{U}_{N}\gamma_{5}\gamma_{\rho}(-g^{\rho\mu} + \frac{p^{\rho}p^{\mu}}{m^{2}})U_{P_{c}}\varepsilon^{*}_{J/\psi\mu}$$

$$\mathcal{L} = g\bar{U}_{N}U_{P_{c}}^{\mu}\varepsilon^{*}_{J/\psi\mu}$$

$$\mathcal{L} = g\bar{U}_{N}U_{P_{c}}^{\mu}\varepsilon^{*}_{J/\psi\mu}$$

$$\mathcal{M}^{P_{c}(4312)} = -\frac{eM_{J/\psi}^{2}}{f_{J/\psi}}\bar{u}_{p}(p_{4}, m_{4})\gamma_{5}\tilde{\gamma}_{\mu}[(p_{1} + p_{2}) + m_{P_{c}(4312)}]$$

$$\mathcal{M}^{P_{c}(4380)} = -\frac{eM_{J/\psi}^{2}}{f_{J/\psi}}\bar{u}_{p}(p_{4}, m_{4})[(p_{1} + p_{2}) + m_{P_{c}(4380)}]$$

$$\times \tilde{\gamma}_{\gamma}\gamma_{5}u_{p}(p_{2}, m_{2})\varepsilon^{*\mu}_{J/\psi}(-g_{\nu\alpha} + \frac{p_{\nu}p_{1}}{m_{2}^{2}})\varepsilon_{\gamma\alpha}$$

$$\times \frac{g_{P_{c}(4312)}^{2}}{((p_{1} + p_{2})^{2} - m_{P_{c}(4312)}^{2})(p_{1}^{2} - m_{J/\psi}^{2})},$$

$$\times \frac{g_{P_{c}(4360)}^{2}}{((p_{1} + p_{2})^{2} - m_{P_{c}(4312)}^{2})(p_{1}^{2} - m_{J/\psi}^{2})},$$

$$\mathcal{M}^{P_{c}(4440)} = -\frac{eM_{J/\psi}^{2}}{f_{J/\psi}}\bar{u}_{p}(p_{4}, m_{4})\gamma_{5}\tilde{\gamma}_{\mu}[(p_{1} + p_{2}) + m_{P_{c}(4440)}]$$

$$\mathcal{M}^{P_{c}(4457)} = -\frac{eM_{J/\psi}^{2}}{f_{J/\psi}}\bar{u}_{p}(p_{4}, m_{4})[(p_{1} + p_{2}) + m_{P_{c}(4457)}]$$

$$\times \tilde{\gamma}_{\nu} \gamma_{5} u_{p}(p_{2}, m_{2}) \varepsilon_{J/\psi}^{*\mu} (-g_{\nu\alpha} + \frac{p_{1\nu}p_{1\alpha}}{m_{J/\psi}^{2}}) \varepsilon_{\gamma\alpha} \\ \times \frac{g_{P_{c}(4440)}^{2}}{((p_{1} + p_{2})^{2} - m_{P_{c}(4440)}^{2})(p_{1}^{2} - m_{J/\psi}^{2})},$$

$$\begin{aligned} \mathcal{A}^{P_{c}(4457)} &= -\frac{eM_{J/\psi}^{2}}{f_{J/\psi}} \bar{u}_{p}(p_{4}, m_{4}) [(\not p_{1} + \not p_{2}) + m_{P_{c}(4457)}] \\ &\times [-g_{\mu\nu} + \frac{1}{3}\gamma_{\mu}\gamma_{\nu} + \frac{1}{3}\frac{\not q}{q^{2}}(\gamma_{\mu}q_{\nu} - \gamma_{\nu}q_{\mu}) + \frac{2}{3}\frac{q_{\mu}q_{\nu}}{q^{2}}] \\ &\times u_{p}(p_{2}, m_{2})\varepsilon_{J/\psi}^{*\mu}(-g^{\nu\alpha} + \frac{p_{1}^{n}up_{1}^{\alpha}}{m_{1}^{2}})\varepsilon_{\gamma\alpha} \\ &\times \frac{g_{P_{c}(4457)}^{2}}{((p_{1} + p_{2})^{2} - m_{P_{c}(4457)}^{2})(p_{1}^{2} - m_{J/\psi}^{2})}, \end{aligned}$$

7

Coupling Constants	TABLE I:		Decay Widths							
g_{P_c}	0.01	0.02	0.04	0.06						
$\overline{\Gamma[P_c(4312) \to J/\psi p] \text{ (keV)}}$	7.71	30.8	123	277						
$\Gamma[P_c(4380) \rightarrow J/\psi p] \text{ (keV)}$	2.93	11.7	46.9	105						
$\Gamma[P_c(4440) \rightarrow J/\psi p] \text{ (keV)}$	9.69	38.8	155	349						
$\Gamma[P_c(4457) \to J/\psi p] \text{ (keV)}$	3.31	13.3	53.0	119						
The coupling constants of molecular scheme:										

The coupling constants of $P_c \rightarrow J/\psi p$ determined from $\gamma p \rightarrow J/\psi p$ process are in accordance with the results from the molecular scheme

molecular scheme:

Yong-Hui Lin and Bing-Song Zou arXiv:1908.05309v1

l		Widths (MeV) with (f_1, f_3)					Widths (MeV) with (f_1, f_3)				
I	Mode	$\bar{D}\Sigma_c$	$\bar{D}^*\Sigma_c$		Mode	$\bar{D}\Sigma_c^*$		$\bar{D}^* \Sigma_c^*$			
I		D(4219)	D(4440) $D($		D(A	457)		$P_c(4376)$	$P_{c}(4500)$	$P_{c}(4511)$	$P_{c}(4523)$
I		$P_{c}(4312)$	$P_c(44$	440)	$P_c(4$	437)		$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$
I		$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	$\bar{D}^* \Lambda_c$	12.4	7.1	17.0	4.5
	$\bar{D}^* \Lambda_c$	3.8	13.9	6.2	12.5	6.1	$J/\psi p$	0.01	0.006	0.02	0.006
	$J/\psi p$	0.001	0.03	0.02	0.02	0.01	$\bar{D}\Lambda_c$	9^{-5}	10.0	0.3	1.5
	$\bar{D}\Lambda_c$	0.06	5.6	1.7	3.8	1.5	πN	2^{-4}	0.003	1^{-4}	3^{-4}
I	πN	0.004	0 002	2^{-4}	0.001	1^{-4}	$\chi_{c0} p$	0.003	0.01	0.002	6^{-7}
	<i>N I</i> V	0.004	0.002	2 . E	0.001	I E	$\eta_c p$	0.001	0.01	6^{-4}	8^{-4}
	$\chi_{c0}p$	-	8^{-4}	4^{-5}	9^{-4}	3^{-5}	ho N	5^{-4}	0.001	0.01	8^{-5}
	$\eta_c p$	0.01	3^{-4}	8^{-5}	2^{-4}	6^{-5}	ωp	0.002	0.004	0.005	3^{-4}
	ho N	3^{-5}	3^{-4}	4^{-5}	2^{-4}	2^{-5}	$\bar{D}\Sigma_c$	5^{-4}	10.6	0.2	1.3
	ωp	1^{-4}	0.001	2^{-4}	6^{-4}	9^{-5}	$\bar{D}\Sigma_c^*$	-	1.0	33.8	6.2
	ŪΣ		2 /	0.5	26	1.0	$\bar{D}^*\Sigma_c$	-	10.6	0.07	1.2
	$D \Delta_c$	-	0.4	0.0	2.0	1.0	$\bar{D}\Lambda_c\pi$	5.0	-	-	-
	$D\Sigma_c^*$	-	0.8	5.4	1.9	6.2	$\bar{D}^* \Lambda_c \pi$	-	4.0	7.7	7.8
	Total	3.9	23.7	13.9	20.7	14.7	Total	17.5	43.3	59.1	22.5

Beam Asymmetry

Beam Asymmetry

1). The Beam Asymmetry is not big in $\gamma p \rightarrow J/\psi p$ scattering.

2). The Beam Asymmetry in t-channel is very different from that in schannel plus t-channel. (node)

3). The Beam Asymmetry explicitly indicates the existence of the s-channel contribution.

Feed-down phenomenon of P_c states

Besides the 2-body decay of P_c states, the 3-body and 4-body decay processes show **some unique phenomena from molecular** P_c **states and Triangle/Box Singularity**.

1. A molecular P_c can only couple to $\Sigma_c^{(*)}\overline{D}^{(*)}$ which is the component of the P_c

2. $\Sigma_c^* \to \Lambda_c \pi$ and $D^* \to D\pi$ processes induce a π emission process in P_c decay.

 $\Lambda_c \overline{D}$ cut appears in the $J/\psi p$ invariant mass spectrum of $P_c \rightarrow J/\psi p \pi(\pi)$ Feed-down peak: a TS(BS) peak around $\Lambda_c \overline{D}$ threshold can be observed in the $J/\psi p$ invariant mass spectrum.

Feed-down phenomenon of P_c states

$J/\psi p$ invariant mass spectrum in $P_c \rightarrow J/\psi p\pi(\pi)$:

I. The enhancement peak around $\Lambda_c \overline{D}$ threshold on $J/\psi p$ spectrum from our calculation was shown.

II. Comparing to the results from TS diagram, the contribution from BS mechanism induces a narrow peak with smaller value.

III. With a comparison, the $P_c(4380)$ is proved to be the important initial state, since the contribution from $P_c(4380)$ is much larger than others.

Letter

Predictions for feed-down enhancements at the $\Lambda_c \bar{D}$ and $\Lambda_c \bar{D}^*$ thresholds via the triangle and box singularities

Ming-Xiao Duan[®],^{1,*} Lin Qiu[®],^{1,2} Xi-Zhe Ling[®],¹ and Qiang Zhao[®],^{1,2,†} ¹Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China ²University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Summary

1). We have studied the $\gamma p \rightarrow J/\psi p$ process in the t channel and s channel with Pomeron, Pc, and $\Lambda_c \overline{D}$ bubble.

2). The Pomeron exchange is found to be the dominate part in the $\gamma p \rightarrow J/\psi p$ process.

3). The s channel contributions also can not be ignored in the analysis.

4). The Beam Asymmetry is given to show the existence of the s channel contribution in the photoproduction.

5). The feed down phenomenon from the 3/4-body decay of Pc is also introduced.

Analysis on $\gamma p \rightarrow J/\psi p$

Pomeron contribution

 $\beta_c = 0.25, 0.27, 0.29 \ GeV^{-1},$ The total and differential cross section of the process can be obtained.

1). The numerical cross section can explain the experimental data generally.

2).The differential cross section can not be explained by the pomeron exchange process.

Experimental aspect

1). The experimental results are determined from the distribution of t and E.

2). In the calculation, we should also include the distribution of t and E.

3). Through a calculation, we find the distribution of E will not obviously influence the differential cross section. TABLE IV. $\gamma p \rightarrow J/\psi p$ differential cross sections in the 8.2–9.28 GeV beam energy range, average t and beam energy in bins of t. The first cross section uncertainties are statistical, and the second are systematic. The overall average beam energy is 8.93 GeV.

18