

Precision Hyperon (Semileptonic Decay) Physics at STCF

Shun(顺) Wang(王) *,1

^{1.} Fudan University

中国物理学会高能物理分会第十四届全国粒子物理学术会议

2024.08.15

*wangshun19@fudan.edu.cn

Quantum correlated polarized-hyperon factory

Fudan Universitv

τ

top

b

bottom

≃4.18 GeV/c²

≃173.1 GeV/c²

2/3

Experiment vs. SM NLO for $R^{\mu e}$ from hyperon semileptonic decays[1].

R ^{µe}	$\Lambda \to p l^- \bar{\nu}_l$	$\Sigma^- \to n l^- \bar{\nu}_l$	$\Xi^0 \to \Sigma^+ l^- \bar{\nu}_l$	$\Xi^-\to\Lambda l^-\bar\nu_l$
Experiment	0.189 ± 0.041	0.442 ± 0.039	0.0092 ± 0.0014	0.6 ± 0.5
SM NLO	$0.153 {\pm} 0.008$	0.444 ± 0.022	0.0084 ± 0.0004	0.275 ± 0.014

復旦大學

Fudan University

- > Before our measurement, there are only **fixed-target experiments** performed about 50 years ago.
- > All these previous branching fraction results are **relative with huge uncertainty**.
- > The best previous result was obtained **based on only 14 events** selected from about 0.6M **bubble chamber pictures**.

Λ	$ ightarrow p\mu^-\overline{ u}_\mu$					PDG 2020		
• $\Gamma(\Lambda \to p\mu^- \overline{\nu}_{\mu})/\Gamma(\Lambda \to N\pi)$								
	$VALUE (10^{-4})$	EVTS	DOCUMENT ID		TECN	COMMENT		
	1.57 ± 0.35	OUR FIT						
	1.57 ± 0.35	OUR AVERAGE						
	1.4 ±0.5	14	BAGGETT	1972B	HBC	$K^{-}p$ at rest		
	2.4 ±0.8	9	CANTER	1971B	HBC	$K^{-}p$ at rest		
	1.3 ±0.7	3	LIND	1964	RVUE			
	1.5 ±1.2	2	RONNE	1964	FBC			

Test lepton flavor universality

 \checkmark The most precise result to date

四大學

Fudan University

PRL 114, 161802 (2015)

お级国象

Super Tau-Charn

Test lepton flavor universality

Discussion and perspective

- > About second-class currents, previous nuclear β decay experiments gave contradictory conclusions.
 - \checkmark Refs. [1-4] are in favor of the existence of the second-class currents
 - $\checkmark\,$ Refs. [5-8] reported the absence of second-class currents.
- In hyperon β decay, flavor-SU(3)-symmetry-breaking effects [9-10] or second-class currents [11] can cause a nonzero axial-vector form factor g_2 , and some of the experiments suggest a large g_2 [12].

Phys. Rev. Lett. 35, 1566 (1975).
 Phys. Rev. Lett. 34, 1533 (1975).
 Phys. Rev. C 59, 1113 (1999).
 Phys. Rev. C 95, 035501 (2017).

[5] Phys. Rev. Lett. 26, 1127 (1971).
[6] Phys. Rev. Lett. 32, 314 (1974).
[7] Eur. Phys. J. A 7, 307 (2000).
[8] Phys. Rev. C 84, 055501 (2011).

[9] Phys. Rev. D 8, 2963 (1973).
[10] Phys. Rev. D 79, 074508 (2009).
[11] Annu. Rev. Nucl. Part. Sci. 53, 39 (2003).
[12] Phys. Rev. D 3, 2638 (1971).

- ► In order to confirm the existence of second-class currents, a unique observable (*R*) was first proposed by S. Weinberg in 1958. $R \equiv \frac{\Gamma(\Sigma^- \to \Lambda e^- \bar{\nu}_e)}{\Gamma(\Sigma^+ \to \Lambda e^+ \nu_e)}$
- If there is no second-class currents, R value should be just the phase-space ratio for these two decays, no matter flavor-SU(3)-symmetry-breaking effects exist or not, so any experimental deviation from this deduction would be decisive evidence for the existence of second-class currents.

PHYSICAL REVIEW

VOLUME 112, NUMBER 4

Charge Symmetry of Weak Interactions*

STEVEN WEINBERG Columbia University, New York, New York (Received June 25, 1958)

Phys. Rev. 112, 1375 (1958)

NOVEMBER 15, 1958

 \succ T. D. Lee and C. N. Yang calculate *R* on the basis of no second-class currents.

 $R_{\text{theory}} \cong 1.57$

PHYSICAL REVIEW

VOLUME 119, NUMBER 4

AUGUST 15, 1960

Implications of the Intermediate Boson Basis of the Weak Interactions: Existence of a Quartet of Intermediate Bosons and Their **Dual Isotopic Spin Transformation Properties**

> T. D. LEE Columbia University, New York, New York

> > AND

C. N. YANG Institute for Advanced Study, Princeton, New Jersey (Received April 11, 1960)

Phys. Rev. **119**, 1410 (1960)

Search for second-class currents

 $\mathcal{B}(\Sigma^+ \to \Lambda e^+ \nu_e) = (2.93 \pm 0.74 \pm 0.13) \times 10^{-5}$

大學

Fudan University

- $R \equiv \frac{\Gamma(\Sigma^- \to \Lambda e^- \bar{\nu}_e)}{\Gamma(\Sigma^+ \to \Lambda e^+ \nu_e)} = \frac{\mathcal{B}(\Sigma^- \to \Lambda e^- \bar{\nu}_e)_{PDG} \cdot \tau_{\Sigma^+ PDG}}{\mathcal{B}(\Sigma^+ \to \Lambda e^+ \nu_e)_{BESIII} \cdot \tau_{\Sigma^- PDG}} = 1.06 \pm 0.28$
- ✓ Update measurement after about 50 years break
- \checkmark The first study at a collider experiment
- \checkmark The most precise result in a single experiment

NO evindence for second-class currents

Search for second-class currents

Discussion and perspective

Extract the CKM matrix element $|V_{us}|$

PRL 92, 251803 (2004)

In the SM : First-row unitarity relation $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

PDG 2024 : Independent measurements

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9984 \pm 0.0007$

 $|V_{ub}|$: Small $(|V_{ub}|^2 \cong 1.7 \times 10^{-5}) \rightarrow$ The effect could be ignored in current precision

 $|V_{ud}|$: Most precise; results from different decays are consistent at $\mathcal{O}(10^{-4}) \rightarrow$ Precise and reliable

 $|V_{us}|: \sigma(|V_{us}|) = 2.7 \times \sigma(|V_{ud}|);$ inconsistence between results from different decays

Most preciseSecond most preciseLargest uncertaintyKaon : 2.3 σ tension from CKM unitarityTau : 3.7 σ deviation from CKM unitarityHyperon : consistent with CKM unitarity $|V_{us}| = 0.22431 \pm 0.00085$ $|V_{us}| = 0.2207 \pm 0.0014$ $|V_{us}| = 0.2250 \pm 0.0027$ PDG 2024HFLAV 2022Dominated by the $\Lambda \rightarrow pe^- \overline{\nu}_e$

Decay width of $\Lambda \rightarrow pe^-\overline{\nu}_e$ in the SM

$$\Gamma_{\rm SM} = \frac{\mathcal{B}_{\Lambda \to pe^- \overline{\nu}_e}}{\tau_{\Lambda}} = \frac{G_F^2 |V_{us}|^2 f_1(0)^2 \Delta^5}{60\pi^3} \left[(1 - \frac{3}{2}\delta + \frac{6}{7}\delta^2) + \frac{4}{7}\delta^2 g_w^2 \right] \qquad \qquad \Delta \equiv M_{\Lambda} - M_p \\ + \left(3 - \frac{9}{2}\delta + \frac{12}{7}\delta^2 \right) g_{av}^2 + \frac{12}{7}\delta^2 g_{av2}^2 + \frac{6}{7}\delta^2 g_w + (-4\delta + 6\delta^2) g_{av} g_{av2} \right] \qquad \qquad \delta \equiv \frac{M_{\Lambda} - M_p}{M_{\Lambda}}$$

$$\succ \text{ Extracting } |V_{us}|, \text{ requires } \mathcal{B}_{\Lambda \to pe^- \overline{\nu}_e}, f_1(0), g_{av} \equiv \frac{g_1(0)}{f_1(0)}, g_w \equiv \frac{f_2(0)}{f_1(0)}, \text{ and } g_{av2} \equiv \frac{g_2(0)}{f_1(0)},$$
$$\square f_1(0): \text{ From LQCD}$$

 $\square \mathcal{B}_{\Lambda \to pe^- \overline{\nu}_e}, g_{av}, g_w, \text{ and } g_{av2}$: From experimental measurement

	Current status			
$\mathcal{B}_{\Lambda ightarrow \mathrm{p}e^{-}\overline{\nu}_{e}}$	No absolute measurement [1]	The assumptior	n of $g_{av2} = 0$	
g_{av2}	No measurement [1]	has not been	n verified	
g _{av}	Measured based on two assumptions of $g_{av2} = 0$ a	and $g_w = 0.97$ [1]	The assump	tion of $g_w = 0.97$
g_w	The latest and most precise measurement is $g_w =$	deviates from t	the measurement 2.7σ	

Measure the CKM matrix element $|V_{us}|$

Discussion and perspective

~0.2M events of $\Lambda \to pe^- \bar{v}_e$ $|V_{us}| = xxx \pm (\sim 0.0013_{exp})$, using Cabibbo $f_1(0)$

Comparable to the averaged $\sigma_{|V_{us}|}$ from Kaon (~0.0009) are Tau (~0.0014)

- The proposed STCF is expected to collect 1 trillion J/ψ and then provide ~10⁹ hyperon pairs per year, which enables us to pursue precision hyperon selmileptonic decay physics including:
 - 1) Test the lepton flavor universality
 - (2) Search for second-class currents
 - ③ Test the CKM matrix unitarity

□ To achieve these goals, inputs from theorists are needed !!!

