

Searching for New Physics in Rare Decays at BESIII

Xi-Qing Hao (On behalf of the BESIII Collaboration) Henan Normal University, Xinxiang, China

2024年8月16日

中国物理学会高能物理分会第十四届全国粒子物理学术会议 2024年8月13日–18日,青岛

- Introduction
- Results from BESIII
- Summary and Outlook

Introduction: Why NP?

- SM achieved great success, including the discovery of Higgs particle. However, It is regard as an low energy effective theory which can not explain:
 - experimentally:
 - small mass of neutrino raising in neutrino oscillation
 - dark matter
 - dark energy
 - CKM based CPV is not enough to produce matter/anti-matter asymmetry in universe
 - theoretically:
 - mass hierarchy
 - why only three generation of fermion
 - neutrino is Dirac or Majorana
 - ...
- Pursue theory of everything

• ...

Why rare decay?

Resent results of rare decay at BESIII

Decay Mode	$B^{UP}_{90\%}$ ($ imes 10^{-8}$)	Publication	Туре	
$J/\psi ightarrow \mu^+ \mu^- \mu^+ \mu^-$	160	PRD109, 052006 (2024)	rare QED	
$\Xi^0 \to \Sigma^- e^+ \nu_e$	16000	PRD107, 012002 (2023)	SU(3)f breaking	
$\Omega^- \to \Sigma^0 \pi^-$	54000	JHEP05, 141 (2024)	$\Delta S = 2$	
$\Omega^- \to n K^-$	24000			
$D_S^+ \rightarrow \pi^+ \pi^0 e^+ e^-$	7000	arXiv:2404.05973	FCNC	
$D_S^+ \to K^+ \pi^0 e^+ e^-$	7100	accepted by PRL		
$D_S^+ \to K_S^0 \pi^+ e^+ e^-$	8100			
$\psi(3696) \rightarrow \Lambda_c^+ \bar{\Sigma}^- + \text{c.c}$	1400	CPC47,013002 (2023)	Weak decay	
$J/\psi \to D^- \mu^+ \nu_\mu$	56	JHEP01, (2024) 126	Weak decay	
$J/\psi\to \bar{D}^0\pi^0$	47	arXiv:2310.07277	Weak decay	
$J/\psi ightarrow ar{D}^0 \eta$	68	accept by PRD		
$J/\psi\to \bar{D}^0\rho^0$	52			
$J/\psi \to D^-\pi^+$	7			
$J/\psi \to D^- \rho^+$	60			

Resent results of BNV&LNV at BESIII

Decay Mode	$B^{UP}_{90\%}$ ($ imes 10^{-8}$)	Publication	Туре	
$\Lambda\to\bar\Lambda$	440	PRL131, 121801 (2023)	BNV	
$\Xi^0 \to K^- e^+$	360	PRD108, 012006 (2023)	BNV	
$\Xi^0 ightarrow K^+ e^-$	190			
$D^0 \rightarrow \bar{p} e^+$	120	PRD105, 032006 (2022)	BNV	
$D^0 \rightarrow p e^-$	220			
$D^+ \rightarrow \bar{n} e^+$ +c.c	1430	PRD106, 112009 (2022)	BNV	
$D^- \rightarrow p e^-$ +c.c	2920			
$\phi ightarrow \pi^+ \pi^+ e^- e^-$	370	arXiv:2308.05490 submitted	LNV	
$J/\psi ightarrow e\mu$	0.45	Sci.China Phys.Mech.Astron. 66, 221011 (2023)	cLFV	

highly suppressed: Search for $J/\psi \rightarrow l_a^+ l_a^- l_b^+ l_b^-$

Events/(0.001 GeV/c²) 'n 0001

First observation

 $\begin{matrix} 0 \\ 3.04 \\ 3.06 \\ 3.08 \\ 3.1 \\ 3.12 \\ 3.14 \\ 3.16 \\ M_{\pi^{4}\pi}^{rec.}(\text{GeV}/c^{2}) \end{matrix}$

(b)

Rxv (cm)

- Pure leptonic processes are ideal for testing accurate QED predictions due to their simplicity and lack of nonperturbative effects.
- Test CP, further LFU if the sub $a \neq b$

Decay

 $J/\psi \rightarrow$

 $I/w \rightarrow$

 $J/\psi \rightarrow$

Data: 0.45 through ψ	billion y (3686)	$\nu(3686) \in \pi^+ \pi^$	events I/ψ		200 (²) 150 100 100	First observatio	(d)
Signal extra	acted th	rough vei	rtex of e^{-}	e^+ track	(S jei 50	$\psi \rightarrow e \leq c_0 \qquad \mu_{\phi} \qquad \mu_{\phi}$	
in first two	modes				04 3.06 3.08 3.1	$3.12 3.14 3.16 \approx -40 \frac{1}{1 2 3}$	4 5 6 7 8
LFU		PRD 1()9, 052(006 (20	24) $M_{\pi^{\dagger}\pi}^{\text{rec.}}(Ge)$	$\frac{V/c^2}{(e)}$ R	xy (cm)
$B_{eeee}/B_{ee\mu\mu} = 1.55 \pm 0.13 \pm 0.14 1\sigma \text{ of NRQCD}$ $B_{\mu\mu\mu\mu}/B_{eeee} < 0.033$ $B_{\mu\mu\mu\mu}/B_{ee\mu\mu} < 0.050$							
				This w	vork		Theory [2]
ecay mode	$N_{ m sig}$	$\epsilon(\%)$	$N(C_{\rm T} > 0)$	$N(C_{\rm T}<0)$	$\mathcal{B}(imes 10^{-5})$	\mathcal{A}_T	$\mathcal{B}(\times 10^{-5})$
$/\psi \rightarrow e^+e^-e^+e^-$	700 ± 39	8.22 ± 0.02	355 ± 27	363 ± 28	$5.48 \pm 0.31 \pm 0.45$	$-0.012 \pm 0.054 \pm 0.010$	5.288 ± 0.028
$\psi \rightarrow e^+ e^- \mu^+ \mu^-$ $\psi \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	$354 \pm 22 \\ 3.4 \pm 4.1$	$\begin{array}{c} 6.46 \pm \ 0.04 \\ 3.96 \pm \ 0.03 \end{array}$	$\begin{array}{c} 193 \pm 15 \\ \dots \end{array}$	$\begin{array}{c} 170 \pm 15 \\ \dots \end{array}$	$3.53 \pm 0.22 \pm 0.13 \\ < 0.16$	$\begin{array}{c} 0.062 \pm 0.059 \pm 0.006 \\ \dots \end{array}$	$\begin{array}{c} 3.763 \pm 0.020 \\ 0.0974 \pm 0.0005 \end{array}$
						theo	.: PRD104.094023

NP in Hyperon: Search for $\Delta S = \Delta Q$ violation

- BF of $\Delta S \neq \Delta Q$ process highly suppressed in SM, or related to breaking effect of SU(3)_f, CP and CPT invariance
- Data: 10 billion $@J/\psi$ energy point through $J/\psi \rightarrow \Xi^0 (\rightarrow \text{Signal}) \overline{\Xi}^0 (\rightarrow \overline{\Lambda} \pi^+)$, provide 10^6 hyperon pairs, double tag method
- Upper limit at 90% C.L.

black dashed: peaking background(fixed Num.)

Second order weak interaction in SM

PRD 107, 012002(2023)

NP in Hyperon: Search for $\Delta S = 2$ process

Decay mode	$N_{ m ST}$	$\epsilon_{ m ST}$ (%)	$N_{ m DT}^{ m U.L.}$	$\epsilon_{ m DT}$ (%)	$\mathcal{B}^{\mathrm{U.L.}}$ (×10 ⁻⁴)
$\Omega^-\to \Sigma^0\pi^-$	25819 ± 188	21.11	12	18.29	5.4
$\Omega^- \to n K^-$			5	16.92	2.4

9

FCNC: Search for $D_s \rightarrow h^+(h^0)e^+e^-$

150-

 $D_s^+ \rightarrow \pi^+ \pi^0 e^+ e^-$

- Data: 7.33 fb⁻¹ @4.128~4.226 energy point

Weak decay: Search for $\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c$

- $\psi(3686) \to \Lambda_c^+ \bar{\Sigma}^- + \text{c.c.}$ with $\Lambda_c^+ \to p K^- \pi^+, \bar{\Sigma}^- \to \bar{p} \pi^0$
- Look signal in mass of $M(pK^-\pi^+)$

(color online) Fit to the $M(pK^-\pi^+)$ distribution for the candidate events from $\psi(3686) \rightarrow \Lambda_c^+ \bar{\Sigma}^-$. Points with error bars are data. The red (black) dashed line is the signal (back-ground), and the blue solid curve is the total fit. The pink dashed line is the inclusive MC sample. The red solid curve is the signal shape enlarged by a factor of 100.

11

Weak decay: Search for $J/\psi \rightarrow D^-\mu^+\nu_\mu + c.c$

- 10 billion J/ψ events @3.09GeV
- Using $J/\psi \rightarrow D^- \mu^+ \nu_\mu$, $D^- \rightarrow K^+ K^- \pi^-$
- Signal extracted by $U_{\text{miss}} = E_{\text{miss}} |P_{\text{miss}}|$

- Upper limit at 90% CL $\mathcal{B}(J/\psi \rightarrow D^-\mu^+\nu_\mu + c. c.) < 5.6 \times 10^{-7}$
- Predict to be at order of 10^{-8} or lower in SM
- The first search of a charmonium weak decay with a muon in the final state.

Weak decay: Search for $J/\psi ightarrow D^{0,-}h^{0,+}$

- 10 billion J/ψ events @3.09GeV
- Reconstruction through $\bar{D}^0 \to K^+ e^- \bar{\nu}_e$ or $D^- \to K^0_S e^- \bar{\nu}_e$
- Signal extracted by recoiling mass of $h^{0,+}$
- Upper limit on branching rate at 90% C.L.

			UNIS WORK	previous
Mode	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	$\mathcal B$ (90% C.L.)	<i>B</i> (90% C.L.)
$J/\psi \to \bar{D}^0 \pi^0$	-49.5 ± 69.3	< 68.8	$< 4.7 \times 10^{-7}$	
$J/\psi ightarrow ar{D}^0 \eta$	-28.9 ± 34.5	< 32.9	$< 6.8 \times 10^{-7}$	
$J/\psi ightarrow ar{D}^0 ho^0$	2.0 ± 37.1	< 59.9	$< 5.2 \times 10^{-7}$	
$J/\psi \to D^-\pi^+$	-4.3 ± 10.3	< 14.4	$< 7.0 imes 10^{-8}$	$< 7.5 \times 10^{-5}$ [3]
$J/\psi ightarrow D^- ho^+$	18.6 ± 26.2	< 51.4	$< 6.0 \times 10^{-7}$	

this would

Why BNV?

The asymmetry of matter and antimatter in the universe is one of the major frontier issues urgently to be solved in particle physics, astrophysics and cosmology.

Search for $\Lambda - \overline{\Lambda}$ oscillation

Since 1980^[PRL44,1316], there have been many experiments searching for BNV through n - n
 oscillation^[PDG2019] with upper limit results, while few results from other baryons.

- 2007, K.-B. Luk pointed out that $\Lambda \overline{\Lambda}$ oscillation may also exist.
- 2010, X.-W. Kang and H.-B. Li^[PRD81,051901] give a prospect of searching for $\Lambda \overline{\Lambda}$ oscillation at the BESIII experiment.
- 2017, the LHCb experiment present a constraint on $\Xi_b^0 \overline{\Xi}_b^0$ oscillation.
- The theoretical advantage for using $\Lambda \overline{\Lambda}$ is it has a second generation quark, which can give further searches with the result of proton decay which only have the first generation quark.

Search for $\Lambda - \overline{\Lambda}$ oscillation

Events/(0.4 MeV)

- Result based on 1.31 billion J/ψ events
- An oscillation event (c.c. implied)

$$J/\psi \to pK^-\bar{\Lambda} \xrightarrow{\text{oscillating}} pK^-\Lambda$$

• Time integrated oscillation rate

$$\mathscr{P}(\Lambda) = \frac{\mathscr{B}(J/\psi \to pK^{-}\Lambda)}{\mathscr{B}(J/\psi \to pK^{-}\overline{\Lambda})} = \frac{N_{WS}^{\text{obs}}/\epsilon_{WS}}{N_{RS}^{\text{obs}}/\epsilon_{RS}}$$

- Bkg free, sys. uncertainty very low (1%)
- Upper limit on oscillation rate at 90% CL

$$\mathcal{P}(\Lambda) < \frac{N_{\rm RS}^{\rm obs}/\epsilon_{\rm WS}}{N_{\rm RS}^{\rm obs}/\epsilon_{\rm RS}} = 4.4 \times 10^{-6} \,.$$

• Oscillation parameter (90% CL)

$$\delta m_{\Lambda\bar{\Lambda}} = \frac{\mathcal{P}(\Lambda)}{2\tau_{\Lambda}^2} < 3.8 \times 10^{-18} \text{ GeV}$$

Wrong Sign Channel (Same Charge) $J/\psi \rightarrow pK^{-}\Lambda \rightarrow pK^{-}(p\pi^{-})$ PRL 131, 121801 (2023) WS Data: dot with error bar 0.5 1.2 1.3 Signal Window: red arrows 0 RS **10**⁴ Data: dots with 10³ error bars 10² Solid line: fit result 10 1.09 1.1 1.12 1.11 1.13 1.14 $M_{p\pi^{-}}$ (GeV) **Right Sign Channel (Opposite Charge)**

 $J/\psi \to pK^-\bar{\Lambda} \to pK^-(\bar{p}\pi^+)_{16}$

BNV/LNV: Search for $\Xi^0 \rightarrow Ke$

1.45

- 10 billion J/ψ events
- First search of BNV in Ξ decay
- Double tag method

- Background free analysis
- Low systematic uncertainty (3.4%)
- No obvious signal observed

LNV: Search for $\phi \rightarrow \pi^+ \pi^+ e^- e^-$

- 10 billion J/ψ events through $J/\psi \rightarrow \phi \eta$
- First search of LNV in ϕ

- Background free analysis
- Upper limit at 90% C.L.

$$\mathcal{B}(\phi\rightarrow\pi^+\pi^+e^-e^-)<3.7\times10^{-6}$$

cLFV: Search for $J/\psi \rightarrow e\mu$

- $8.998 \times 10^9 J/\psi$ events (without 2012 data)
- Searching for two back-to-back $e \ \mu$
- Expected 24.8(J/ψ)+12.0(continuum) bkg events
- Observe 29 candidate events

• Upper limit at 90% C.L.

 $\mathcal{B}(J/\psi
ightarrow e\mu) < 4.5 imes 10^{-9}$

- Improve the previous best limit by a factor of **30**
- The most precise cLFV search in heavy quarkonium

Summary

- Searching rare decay from experiment plays key role to reveal NP beyond SM.
- Present constraints are still above SM predictions, no evidence of NP have been found yet.
- In the future, more data on BESIII will collected, new results and more strict constraints can be expected.

Backup Slides

Introduction:BEPCII/BESIII

BESIII: Beijing Spectrometer III, the main detector for BEPC II.

The storage ring: A sports track shaped accelerator with a circumference of 237.5M.

Introduction:BESIII Detector

• General purpose detector at BEPCII, $E_{cm} \approx 2-4.6 \text{ GeV}$, $L_{peak} \approx 10^{33}/\text{cm}^2/\text{s}$

Versatile researches in τ-charm physics

Introduction:BESIII Collaboration

Europe (18)

Germany(6): Bochum University, GSI Darmstadt, Helmholtz Institute Mainz, Johannes Gutenberg University of Mainz, Universitaet Giessen, University of Münster Italy(3): Ferrara University, INFN, University of Turin, Netherlands(1): KVI/University of Groningen Russia(2): Budker Institute of Nuclear Physics, Dubna JINR Sweden(1):Uppsala University Turkey (1): Turkish Accelerator Center Particle Factory Group UK(3): University of Manchester, University of Oxford, University of Bristol **Carnegie Mellon University** Poland(1): National Centre for Nuclear Research Mongolia(1) **Indiana University** University of Hawaii **Institute of Physics and Technology** EOPLE'S REPUBLIC OF CHINA Pakistan(2) Korea(1) **COMSATS** Institute of Information Technology **Chung-Ang University** University of the Punjab Thailand(1) India(1) Suranaree University of Technology Indian Institute of Technology madras **China (54)** LOCEAN Beihang University, Central China Normal University, Central South University, ECUADO China Center, of Advanced Science and Technology, China University of Geosciences, Chile Douth AMERI Fudan University, Guangxi Normal University, Guangxi University, Hangzhou University of Tarapaca Normal University, Hebei University, Henan University, Henan Normal University, Henan University of Science and Technology, Henan University of Technology, Huangshan College, Hunan University, Hunan Normal University, Inner Mongolia University, Institute of High Energy Physics, Institute of Modern Physics, Jilin University, Lanzhou University, Liaoning Normal University, Liaoning University, Nanjing Normal University, Nanjing University, Nankai University, North China Electric Power University, Peking University, Oufu Normal University, Renmin University of China, Shanxi University, Shanxi Normal University, Sichuan University, Shandong Normal University, Shandong University, handong University of Technology, Shanghai Jiao Tong University, Soochow University, South China Normal University, Southeast University, Sun Yat-sen University, Tsinghua BESIII: ~600 members 85 University, University of Chinese Academy of Sciences, University of Jinan, University of Science and Technology of China, institutes, 17 countries. University of Science and Technology Liaoning, University of South China, Wuhan University, Xinyang Normal University, Yantai University, Yunnan 18 MOLDOV 24^{自然资源部 監制} University, Zhejiang University, Zhengzhou University

Introduction:BEPCII

Luminosity reached 3.3×1032 cm-2s-1

Luminosity reached 1.0×1033 cm-2s-1

May 13, 2009

Apr. 5, 2016

R1IBL1 R1IQ4

RIMBI

RIIQI

R1102

R1103

