Xing-Bo Yuan (袁䫤博)

Central China Normal University (**华**中**师**范大学)

第⼗四届全国粒⼦物理学术会议 ⼭东⼤学, ⻘岛,24.08.16

$B^+ \to K^+ \nu \bar{\nu}$ excess@Belle II, **(Dark) SMEFT and NP flavour structure**

arXiv: 2402.19208,Biao-Feng Hou(侯镖锋),Xin-Qiang Li(李新强),Meng Shen(沈萌),Ya-Dong Yang(杨亚东),XBY

$b \rightarrow s\nu\bar{\nu}$: exp & theory

2021 Apr

2023 Aug

Impact of $B\rightarrow B$

Thomas E. Browd Bhubaneswar, Ins Published in: Phy \Box pdf $\mathcal O$ D

Chuan-Hung Chen Wei Su (Taiwan, Na Published in: Phys. \Box pdf $\mathcal O$ DOI

Higgs portal inte David McKeen (TRI Published in: Phys.

 \Box pdf $\mathcal O$ DOI

Light new physi **Wolfgang Altmanns** Inguglia (Vienna, OA Published in: Phys. \Box pdf $\mathcal O$ DOI

 $B \to K \nu \bar{\nu}$, MiniBo Alakabha Datta (Mi 2023) Published in: Phys. \Box pdf $\mathcal O$ DOI

 $B \to K^* M_X$ \ Alexander Berezhn Published in: EPL 1 odf \mathcal{O} DOI

or anomalie

n-Hung Chen 2023) shed in: Phys. odf \mathcal{O} DOI

isiting mode -Il Collaboratio shed in: *Phys.* odf \mathcal{O} DOI

ew look at b_\parallel cesco Loparco int: 2401.1199 odf $\quad \Box$ cite

relating \bar{B} : <mark>ı-Zhi Chen, Qia</mark> int: 2401.1155: odf $\quad \Box$ cite

ent $B^+ \!\to$. Yu Ho, Jongku int: 2401.1011 odf $\quad \Box$ cite

30+ theory papers !

$b \rightarrow s\nu\bar{\nu}$: exp & theory

$b \rightarrow s\nu\bar{\nu}$: exp & theory

Why such a large NP effect has not shown up in other $b \rightarrow s$ decays ? in $b \to d$, $s \to d$ decays ?

operator structure highly constrained by Left-handed neutrino

$b \rightarrow s\nu\bar{\nu}$: SMEFT

SMEFT

$$
\begin{aligned}\n\mathcal{Q}_{Hq}^{(1)} &= \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H \right) \left(\bar{q}_{p} \gamma^{\mu} q_{r} \right), \\
\mathcal{Q}_{Hq}^{(3)} &= \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H \right) \left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r} \right), \\
\mathcal{Q}_{Hd} &= \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H \right) \left(\bar{d}_{p} \gamma^{\mu} d_{r} \right), \\
\mathcal{Q}_{ld} &= \left(\bar{l}_{p} \gamma^{\mu} l_{r} \right) \left(\bar{d}_{s} \gamma_{\mu} d_{t} \right), \\
\mathcal{Q}_{lq}^{(1)} &= \left(\bar{l}_{p} \gamma^{\mu} l_{r} \right) \left(\bar{q}_{s} \gamma_{\mu} q_{t} \right), \\
\mathcal{Q}_{lq}^{(3)} &= \left(\bar{l}_{p} \gamma^{\mu} \tau^{I} l_{r} \right) \left(\bar{q}_{s} \tau^{I} \gamma_{\mu} q_{t} \right),\n\end{aligned}
$$

20 $K^{*0}\nu\bar\nu) \cdot 10^6$ $10\,$ \uparrow $\mathcal{B}\left(B^{0}\right)$ $\overline{0}$ $\overline{0}$

 $\mu_{\rm EW}$

LEFT
$$
\begin{aligned}\n\mathcal{O}_L^{\nu_i \nu_j} &= \left(\bar{s} \gamma_\mu P_L b\right) \left(\bar{\nu}_i \gamma^\mu P_L \nu_j\right) \\
\mathcal{O}_R^{\nu_i \nu_j} &= \left(\bar{s} \gamma_\mu P_R b\right) \left(\bar{\nu}_i \gamma^\mu P_L \nu_j\right)\n\end{aligned}
$$

μb

Bause, Gisbert, Hiller, 2309.00075 Allwicher, Becirevic, Piazza, Rosauro-Alcaraz, Sumensari, 2309.02246 Chen, Wen, Xu, 2401.11552

 $\mathcal{O}_L^{\nu_i\nu_j} = \left(\bar{s}\gamma_\mu P_L b\right)\left(\bar{\nu}_i\gamma^\mu P_L \nu_j\right) \ \mathcal{O}_R^{\nu_i\nu_j} = \left(\bar{s}\gamma_\mu P_R b\right)\left(\bar{\nu}_i\gamma^\mu P_L \nu_j\right)$ **LEFT**

operator structure highly constrained by Left-handed neutrino *μb*

$b \rightarrow s\nu\bar{\nu}$: SMEFT

SMEFT

 μ_{EW}

$$
\begin{aligned}\n\mathcal{Q}_{Hq}^{(1)} &= \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H \right) \left(\bar{q}_{p} \gamma^{\mu} q_{r} \right), \\
\mathcal{Q}_{Hq}^{(3)} &= \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H \right) \left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r} \right), \\
\mathcal{Q}_{Hd} &= \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H \right) \left(\bar{d}_{p} \gamma^{\mu} d_{r} \right), \\
\mathcal{Q}_{ld} &= \left(\bar{l}_{p} \gamma^{\mu} l_{r} \right) \left(\bar{d}_{s} \gamma_{\mu} d_{t} \right), \\
\mathcal{Q}_{lq}^{(1)} &= \left(\bar{l}_{p} \gamma^{\mu} l_{r} \right) \left(\bar{q}_{s} \gamma_{\mu} q_{t} \right), \\
\mathcal{Q}_{lq}^{(3)} &= \left(\bar{l}_{p} \gamma^{\mu} \tau^{I} l_{r} \right) \left(\bar{q}_{s} \tau^{I} \gamma_{\mu} q_{t} \right),\n\end{aligned}
$$

Why such a large NP effect has not shown up in other $b \to s$ decays ? $\mathbf{a} \mathbf{b} \rightarrow d \mathbf{,} \ \mathbf{s} \rightarrow d$ decays ? \textbf{NP} flavour structure

Minimal Flavour Violation

‣Flavour symmetry without Yukawa

 $G_{\rm QF} = SU(3)_q \otimes SU(3)_u \otimes SU(3)_d$

‣Flavour symmetry breaking only from SM Yukawa

 $-\mathcal{L}_Y = \bar{q} Y_d H d + \bar{q} Y_u \tilde{H} u + \text{h.c.}$

▶ Flavour symmetry recovering: Yukawa coupling \implies spurion field

$$
Y_u \sim \big(3,\bar{3},1\big) \hspace{1.5cm} Y_d \sim \big(3,1,
$$

EFT with MFV: operators, constructed from SM and Yukawa spurion fields, are invariant under CP and $G_{\rm QF}$

$$
\mathcal{C}^{\text{MFV}} = \begin{cases} f(A, B) & \text{for } \bar{q}\gamma^{\mu}\mathcal{C}q, \\ f(A, B)Y_d & \text{for } \bar{q}\mathcal{C}d, \ \bar{q}\sigma^{\mu\nu}\mathcal{C}d, \\ \epsilon_0 1 + Y_d^{\dagger}g(A, B)Y_d & \text{for } \bar{d}\gamma^{\mu}\mathcal{C}d, \end{cases} \qquad A = Y_u Y_u^{\dagger} \\ B = Y_d Y_d^{\dagger}
$$

\implies

 $\overline{3})$

D'Ambrosio, Giudice, Isidori, Strumia, 2009

Minimal Flavour Violation

‣Spurion function

 $f(A, B) = \epsilon_0 1 + \epsilon_1 A + \epsilon_2 B + \epsilon_3 A^2 + \epsilon_4 B^2 + \epsilon_5 A B + \ldots$

 \blacktriangleright Cayley-Hamilton identity for 3×3 invertible matrix 3×3 invertible matrix X

$$
X^3 = \text{Det}X \cdot \mathbb{1} + \frac{1}{2} [\text{Tr}X^2 - (\text{Tr}X)^2] \cdot X + \text{Tr}X
$$

▶ Spurion function after resummation

$$
f(A, B) = \epsilon_0 1 + \epsilon_1 A + \epsilon_3 A^2 + \epsilon_5 AB + \epsilon_7 A BA + \epsilon_{10} A
$$

$$
+ \epsilon_2 B + \epsilon_4 B^2 + \epsilon_6 BA + \epsilon_9 B AB + \epsilon_8 B
$$

• assumption #1: neglect tiny imaginary parts of • assumption #2: neglect spurion B (suppressed by $\mathcal{O}(\lambda_d^2)$) *ϵi* $\binom{2}{d}$

$$
f(\mathsf{A},\mathsf{B}) \approx \epsilon_0 \mathbb{1} + \epsilon_1 \mathsf{A} + \epsilon_2 \mathsf{A}^2
$$

 $\zeta\cdot X^2$

Colangelo, Nikolidakis, Smith, 2009 Mercolli, Smith, 2009

 $\epsilon_1\epsilon_2A^2B^2+\epsilon_{14}B^2AB+\epsilon_{15}AB^2A^2$ $3A^2 + \epsilon_{13}B^2A^2 + \epsilon_{11}ABA^2 + \epsilon_{16}B^2A^2B$.

Minimal Flavour Violation

‣Numerics

$$
\Delta_q = \begin{pmatrix} 0.8 & -3.3 - 1.5i & 79.3 + 35.4i \\ -3.3 + 1.5i & 16.6 & -397.5 + 8.1i \\ 79.3 - 35.4i & -397.5 - 8.1i & 9839.0 \end{pmatrix} \times 10^{-4}
$$

\n
$$
\begin{pmatrix} 0.0021 & -0.18 - 0.08i & 191.3 + 85.4i \end{pmatrix}
$$

 $\Delta_q \hat{\lambda}_d = \begin{pmatrix} -0.009 + 0.004i & 0.88 & -958.7 - 0.21 - 0.10i & -21.1 - 0.4i & 2372 \end{pmatrix}$

kype FCNC !

$$
\begin{array}{l} 7 + 19.6i \\ 7 + 19.6i \\ 728.1 \end{array} \times 10^{-6}
$$

$$
C^{MFV} = \begin{cases} \epsilon_0 1 + \epsilon_1 \Delta_q & \text{for } \bar{d}_L \gamma^\mu C d_L \\ \epsilon_0 \hat{\lambda}_d + \epsilon_1 \Delta_q \hat{\lambda}_d & \text{for } \bar{d}_L C d_R, \bar{d}_L \sigma^{\mu\nu} C d_R & \Delta_q = V^{\dagger} \hat{\lambda}_u^2 V \\ \epsilon_0 1 & \text{for } \bar{d}_R \gamma^\mu C d_R & \text{No Right-handed down-t} \end{cases}
$$

‣MFV coupling **FCNC controlled by CKM**

$b \rightarrow s\nu\bar{\nu}$: SMEFT with MFV

‣Prediction

$$
\frac{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})}{\mathcal{B}(B^0 \to K^* \nu \bar{\nu})} = \frac{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})} = \frac{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}}} = 0.46 \pm 0.07
$$
\n
$$
\frac{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})}{\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})} = \frac{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}}} = 29.7 \pm 5.6
$$
\n
$$
\text{prediction}
$$
\n
$$
\frac{\mathcal{B}(B^0 \to K^0 \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^0 \to K^0 \nu \bar{\nu})_{\text{SM}}} = (9.00 \pm 0.87) \times 10^{-6}
$$
\n
$$
\frac{\mathcal{B}(B^0 \to K^* \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^0 \to K^* \nu \bar{\nu})_{\text{MS}}} = (1.40 \pm 0.18) \times 10^{-6}
$$
\n
$$
\frac{\mathcal{B}(B^0 \to K^* \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}}} = (1.40 \pm 0.18) \times 10^{-7}
$$
\n
$$
\frac{\mathcal{B}(B^+ \to K^* \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}}} = (1.40 \pm 0.18) \times 10^{-7}
$$
\n
$$
\frac{\mathcal{B}(B^+ \to K^* \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}}} = (1.40 \pm 0.18) \times 10^{-7}
$$
\n
$$
\
$$

$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\rm SM} = (9.00 \pm 0.87) \times 10^{-6}
$$

$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\rm MFV} = (50^{+17}_{-16}) \times 10^{-6}
$$

$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\rm exp} < 18 \times 10^{-6}
$$

$$
\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (1.40 \pm 0.18) \times 10^{-7}
$$

$$
\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\rm MFV} = (7.8^{+2.8}_{-2.6}) \times 10^{-7}
$$

$$
\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\rm exp} < 140 \times 10^{-7}
$$

11

$b \rightarrow s\nu\bar{\nu}$: SMEFT with MFV

‣Prediction

‣prediction

Belle II excess (if confirmed in the future) implies:

- impossible to explain in SMEFT with MFV
- NP flavour structure is highly non-trivial
- **NP structure in quark sector is beyond MFV**
- **flavour violation is beyond Yukawa coupling**

This conclusion only assumes the quark MFV. No lepton flavour structure is assumed.

$$
\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (1.40 \pm 0.18) \times 10^{-7}
$$

$$
\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\rm MFV} = (7.8^{+2.8}_{-2.6}) \times 10^{-7}
$$

$$
\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})_{\rm exp} < 140 \times 10^{-7}
$$

$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\rm SM} = (9.00 \pm 0.87) \times 10^{-6}
$$

$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\rm MFV} = (50^{+17}_{-16}) \times 10^{-6}
$$

$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\rm exp} < 18 \times 10^{-6}
$$
 Inconsistent.

μb

2011 Kamenik, Smith

- 2014 Duch, Grzadkowski, Wudka
- 2017 Brod, Gootjes-Dreesbach, Tammaro, Zupan
- 2021 Criado, Djouadi, Perez-Victoria, Santiago
- 2022 Aebischer, Altmannshofer, Jenkins, Manohar (basis@dim-6)
- 2023 Song, Sun, Yu (basis@dim-8)

2020 Bauer, Neubert, Renner, Schnubel, Thamm 2023 Song, Sun, Yu (basis@dim-8) Axion-like particle, see also H.Y.Cheng, Phys.Rept 1988

$$
\mathsf{T}^{\mathsf{c}}
$$

$b \rightarrow s \nu \bar{\nu}$: exp picture

$$
L_p d_{Rr}) \phi^2
$$
 2022 Aebischer, Altmannshofer, Jenkins, Manohar (**bas**

$$
L_p \gamma_\mu d_{Lr}) (\bar{\chi}_a \gamma^\mu \chi_b)
$$
 2022 He, Ma, Valencia (**basis@dim-6**)

$$
L_p \gamma_\mu d_{Lr}) X^{\mu\nu} X_\nu
$$
 2023 Liang, Liao, Ma, Wang (**basis@dim-8**)

13

DM DM **Dark SMEFT** $\mathcal{Q}_{d\phi}=\big(\bar{q}_p$ $\mathcal{Q}_{\phi q}=\big(\bar q_p$

 $\mathcal{Q}_{q\chi}=\big(\bar q_p$ $\mathcal{Q}_{dHX} = \left(\bar{q}_{p} \right)$ $\mathcal{Q}_{qa}=\big(\bar{q}_p$

Dark LEF $\mathcal{O}_{d\phi}=(\bar{d})$ $\begin{align} \mathcal{O}_{d\chi}^{V,\,LR} &= (\bar{d}_I\ \mathcal{O}_{dX}^T &= (\bar{d}_I\ \mathcal{O}_{da}^L &= (\bar{d}_I\ \end{align}$

$b \rightarrow s\nu\bar{\nu}$: DSMEFT

Can DSMEFT operators explain the Belle II excess, while satisfy other $b \rightarrow s$ bounds?

Dark SMEFT: Scalar

14

Dark SMEFT: Vector

Dark SMEFT: Fermion, ALP

All the operators survive from the constraints of the various FCNC decays. (e.g., $B^0 \rightarrow K^0 + {\rm inv}$) and CEPC (e.g., $B_s \rightarrow \phi + {\rm inv}$ and $B_s \rightarrow {\rm inv}$) measurements.

In the future, all the parameter space to explain the Belle II anomaly can be covered by combing the Belle II

Dark SMEFT with MFV

‣MFV coupling $b\rightarrow s, b\rightarrow d, s\rightarrow d$ are connected with each other.

$$
\mathcal{C}_i^{\text{MFV}} = \begin{cases} \epsilon_0^i \hat{\lambda}_d + \epsilon_1^i \Delta_q \hat{\lambda}_d & \text{for } \mathcal{Q}_i = \mathcal{Q}_{d\phi}, \mathcal{Q}_{d\phi^2}, \mathcal{Q}_{dHX}, \mathcal{Q}_{dHX^2}, \mathcal{Q}_{dX^2}, \\ \epsilon_0^i \mathbb{1} + \epsilon_1^i \Delta_q & \text{for } \mathcal{Q}_i = \mathcal{Q}_{\phi q}, \mathcal{Q}_{qX}, \mathcal{Q}_{qXX}, \mathcal{Q}_{q\tilde{X}X}, \mathcal{Q}_{DqX^2}, \mathcal{Q}_{qX}, \mathcal{Q}_{HqX}, \mathcal{Q}_{HqX}, \\ \epsilon_0^i \mathbb{1} & \text{for } \mathcal{Q}_i = \mathcal{Q}_{\phi d}, \mathcal{Q}_{dX}, \mathcal{Q}_{dXX}, \mathcal{Q}_{d\tilde{X}X}, \mathcal{Q}_{DdX^2}, \mathcal{Q}_{dX}, \mathcal{Q}_{HdX}, \mathcal{Q}_{da}, \end{cases}
$$

17

‣Numerics

$$
\Delta_q = \begin{pmatrix} 0.8 & -3.3 - 1.5i & 79.3 + 35.4i \\ -3.3 + 1.5i & 16.6 & -397.5 + 8.1i \\ 79.3 - 35.4i & -397.5 - 8.1i & 9839.0 \end{pmatrix} \times 10^{-4}
$$

 $\Delta_q \hat{\lambda}_d = \begin{pmatrix} 0.0021 & -0.18 - 0.08i & 191.3 + 85.4i \\ -0.009 + 0.004i & 0.88 & -958.7 + 19.6i \\ 0.21 - 0.10i & -21.1 - 0.4i & 23728.1 \end{pmatrix} \times 10^{-6}$

8 operators are eliminated

Dark SMEFT with MFV: Scalar

all the operators survive some ones highly constrained

Dark SMEFT with MFV: Fermion, ALP

all the operators survive

Dark SMEFT with MFV: Vector

all the operators survive, some ones highly constrained **the operators survive, some ones highly constrained**

Dark SMEFT: dB/dq^2

Difficult to distinguish the DSMEFT operators by considering only the $B^+\to K^+\nu\bar{\nu}$ decay. However,

21

Dark SMEFT: d*B***/d***q* **,** 2 , F_L

All the operators are distinguishable from each other by combing these observables, except

$m_{\text{DM}} = 700 \text{ MeV}$

 $\boldsymbol{\mathcal{Q}}_{dX^2}$ and $\boldsymbol{\mathcal{Q}}_{DqX}$

Dark SMEFT: dB/dq^2 , F_L $m_{DM} = 1500 \text{ MeV}$ 2 , F_L

 \mathcal{Q}_{dX^2} and \mathcal{Q}_{DqX}

LEFT $\mu_{\rm EW}$ -

 $\frac{\mathcal{B}(B^+\to K^+\nu\bar{\nu})}{\mathcal{B}(B^+\to \pi^+\nu\bar{\nu})} = \frac{\mathcal{B}(B^+\to K^+\nu\bar{\nu})_{\text{SM}}}{\mathcal{B}(B^+\to \pi^+\nu\bar{\nu})_{\text{SM}}} = 29.7 \pm 5.6.$

Dark SMEFT

Conclusion

Belle II excess (if confirmed in the future) implies:

All DSMEFT operators survive in general and MFV flavour structure $\mathrm{d}B/\mathrm{d}q^{2}$ and F_{L} are useful to distinguish them

- impossible to explain in SMEFT with MFV
- NP flavour structure is highly non-trivial
- **NP structure in quark sector is beyond MFV**
- **flavour violation is beyond Yukawa coupling**

future work: interplay with DM direct detection and relic density

HadronToNP:a package to calculate decay of hadron to new particles $B \to K + DM$, $B \to \rho + DM$, $\Lambda_b \to \Lambda + DM$, $\Upsilon \to DM$, ... $D \to \pi + DM$, $D \to \rho + DM$, $\Xi_c \to \Xi + DM$, $J/\psi \to DM$, ... *to be finished*

IDENTIFY
\n**IDENTIFY**
\n
$$
Q_{Hq}^{(1)} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\overline{q}_{p} \gamma^{\mu} q_{r}),
$$
 induce $\overline{s} b Z$ interaction,
\n
$$
Q_{Hq}^{(3)} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\overline{q}_{p} \gamma^{\mu} q_{r}),
$$
 Thus, universally affect
\n
$$
Q_{Hd} = (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\overline{d}_{p} \gamma^{\mu} d_{r}),
$$

\n
$$
Q_{Id} = (\overline{l}_{p} \gamma^{\mu} l_{r}) (\overline{d}_{s} \gamma_{\mu} d_{t}),
$$

\n
$$
Q_{Iq}^{(1)} = (\overline{l}_{p} \gamma^{\mu} l_{r}) (\overline{q}_{s} \gamma_{\mu} q_{t}),
$$

\n
$$
Q_{Iq}^{(3)} = (\overline{l}_{p} \gamma^{\mu} \gamma^{\mu} l_{r}) (\overline{q}_{s} \gamma^{\mu} q_{t}),
$$

\n
$$
Q_{Iq}^{(3)} = (\overline{s} \gamma_{\mu} P_{L} b) (\overline{\nu}_{i} \gamma^{\mu} P_{L} \nu_{j})
$$

\n
$$
Q_{R}^{\nu_{i} \nu_{j}} = (\overline{s} \gamma_{\mu} P_{R} b) (\overline{\nu}_{i} \gamma^{\mu} P_{L} \nu_{j})
$$

\n
$$
Q_{R}^{\nu_{i} \nu_{j}} = (\overline{s} \gamma_{\mu} P_{R} b) (\overline{\nu}_{i} \gamma^{\mu} P_{L} \nu_{j})
$$

\n
$$
Q_{R}^{\nu_{i} \nu_{j}} = (\overline{s} \gamma_{\mu} P_{R} b) (\overline{\nu}_{i} \gamma^{\mu} P_{L} \nu_{j})
$$

\n**IDENTIFY**
\n**IDENTIFY**

► Prediction
\n
$$
\frac{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})}{\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})} = \frac{\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{SM}}}{\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\text{SM}}} = 0.46 \pm 0.07
$$
\n> prediction
\n
$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\text{SMEFT}} = (9.00 \pm 0.87) \times 10^{-6}
$$
\n
$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})_{\text{SMEFT}} = (50^{+17}_{-16}) \times 10^{-6}
$$
\n> Only $\mathcal{O}_{lq}^{(3)}$ is relevant with $R_{D^{(*)}}$
\n
$$
\mathcal{O}_{lq}
$$
 can explain the $B^+ \to K^+ \nu \bar{\nu}$ data
\n
$$
\mathcal{O}_{ld}
$$
 also induce $\mathcal{O}'_{9,ij}$ and $\mathcal{O}'_{10,ij}$
\n
$$
\mathcal{O}_{lq}
$$
 also induce $\mathcal{O}'_{9,ij}$ and $\mathcal{O}'_{10,ij}$
\n
$$
\mathcal{O}'_{9,ij}
$$
 and $\mathcal{O}'_{10,ij}$ worse the $b \to s \ell \ell$ fit
\n
$$
\mathcal{O}'_{9,ij}
$$
 and $\mathcal{O}'_{10,ij}$ with $i = j = \tau$ has no effect.
\n
$$
\mathcal{O}'_{9,ij}
$$
 and $\mathcal{O}'_{10,ij}$ with $i \neq j$ (i.e. LFV) has no effect.

SM

$$
O'_{9, ij} = (\bar{b}\gamma^{\mu} P_{R} s)(\bar{\ell}_{i} \gamma_{\mu} \ell_{j})
$$

$$
O'_{10, ij} = (\bar{b}\gamma^{\mu} P_{R} s)(\bar{\ell}_{i} \gamma_{\mu} \gamma_{5} \ell_{j})
$$

SMEFT notation:
$$
l = \begin{pmatrix} v \\ e \end{pmatrix}_L
$$
, $q = \begin{pmatrix} u \\ d \end{pmatrix}_L$, d

$b \rightarrow s\nu\bar{\nu}$ and $b \rightarrow s\ell\ell$

B.F.Hou, X.Q.Li, M.Shen, Y.D.Yang, **XBY**, 2402.19208

$$
Q_{d\phi} = (\bar{q}_p d_r H) \phi + \text{h.c.}, \qquad Q_{d\phi^2} = (\bar{q}_p d_r H) \phi^2 + \text{h.c.},
$$

\n
$$
Q_{\phi q} = (\bar{q}_p \gamma_\mu q_r) (i\phi_1 \overleftrightarrow{\partial^\mu} \phi_2), \qquad Q_{\phi d} = (\bar{d}_p \gamma_\mu d_r) (i\phi_1 \overleftrightarrow{\partial^\mu} \phi_2),
$$

\n
$$
Q_{q\chi} = (\bar{q}_p \gamma_\mu q_r) (\bar{\chi} \gamma^\mu \chi), \qquad Q_{d\chi} = (\bar{d}_p \gamma_\mu d_r) (\bar{\chi} \gamma^\mu \chi), \qquad (4.3)
$$

$$
\mathcal{Q}_{dHX} = (\bar{q}_p \sigma_{\mu\nu} d_r) H X^{\mu\nu} + \text{h.c.},\tag{4.4}
$$

$$
Q_{dX} = (\bar{d}_p \gamma_\mu d_r) X^\mu,
$$
\n
$$
Q_{HdX} = (H^{\dagger} H) (\bar{d}_p \gamma^\mu d_r) X_\mu,
$$
\n
$$
Q_{qX} = (\bar{q}_p \gamma_\mu q_r) X^\mu,
$$
\n
$$
Q_{HqX} = (H^{\dagger} H) (\bar{q}_p \gamma^\mu q_r) X_\mu,
$$
\n
$$
Q_{dX^2} = (\bar{q}_p d_r H) X_\mu X^\mu + \text{h.c.},
$$
\n
$$
Q_{HqX}^{(3)} = (H^{\dagger} \tau^I H) (\bar{q}_p \tau^I \gamma^\mu q_r) X_\mu,
$$
\n
$$
Q_{qXX} = (\bar{q}_p \gamma_\mu q_r) X^{\mu\nu} X_\nu,
$$
\n
$$
Q_{dXX} = (\bar{d}_p \gamma_\mu d_r) X^{\mu\nu} X_\nu,
$$
\n
$$
Q_{d\tilde{X}X} = (\bar{d}_p \gamma_\mu d_r) \tilde{X}^{\mu\nu} X_\nu,
$$
\n
$$
Q_{DqX^2} = i (\bar{q}_p \gamma^\mu D^\nu q_r) X_\mu X_\nu + \text{h.c.},
$$
\n
$$
Q_{DdX^2} = i (\bar{d}_p \gamma^\mu D^\nu d_r) X_\mu X_\nu + \text{h.c.},
$$
\n
$$
Q_{dHX^2} = i (\bar{d}_p \gamma^\mu D^\nu d_r) X_\mu X_\nu + \text{h.c.},
$$

$$
Q_{qa} = (\bar{q}_p \gamma_\mu q_r) \partial^\mu a, \qquad Q_{da} = (\bar{d}_p \gamma_\mu d_r) \partial^\mu a, \qquad (4.7)
$$

$$
\mathcal{C}_i = \tilde{\mathcal{C}}_i \cdot \begin{cases} (m_X/\Lambda)^2 & \text{for } \mathcal{Q}_i = \mathcal{Q}_{dX^2}, \mathcal{Q}_{DdX^2}, \mathcal{Q}_{DqX^2}, \mathcal{Q}_{dHX^2}, \\ (m_X/\Lambda) & \text{for } \mathcal{Q}_i = \text{others}. \end{cases}
$$

 $_r \big) X_\mu,$

 $+$ h.c.,

 (4.5)

 (4.2)

very preliminary result for top-philic DM

One can also apply the MFV hypothesis to the lepton sector. However, since the mechanism of neutrino mass generation is still unknown, there are different approaches to formulate the leptonic MFV $[73-79]$. Here, we consider the realization of leptonic MFV within the so-called minimal field content $[73, 74]$, in which the neutrino masses are generated by the Weinberg operator. In this case, the Yukawa interactions in the lepton sector can be written as

$$
-\Delta \mathcal{L} = \bar{e} Y_e H^{\dagger} l + \frac{1}{2\Lambda_{\text{LN}}} (\bar{l}^c \tau_2 H) Y_\nu (H^T \tau_2 l) + \text{h.c.}, \qquad (2.18)
$$

where l denotes the left-handed lepton doublet with the charge conjugated field given by $l^c = -i\gamma_2 l^*$, and e is the right-handed charged lepton singlet. Λ_{LN} denotes the breaking scale of the lepton number symmetry $U(1)_{LN}$. Y_e and Y_{ν} stand for the 3×3 Yukawa coupling matrices in flavour space. In the absence of these Yukawa couplings, the lepton sector respects the flavour symmetry

$$
G_{\rm LF} = SU(3)_l \otimes SU(3)_e. \tag{2.19}
$$

finite polynomial of A_{ℓ} and B_{ℓ} . After neglecting all the terms involving B_{ℓ} , which are suppressed by the small lepton Yukawa couplings Y_e , we obtain

$$
\mathcal{C}_{\text{MFV}} \approx \kappa_0 + \kappa_1 \mathsf{A}_{\ell} + \kappa_2 \mathsf{A}_{\ell}^2, \tag{2.21}
$$

where the coefficients $\kappa_{0,1,2}$ are free real parameters. In the numerical analysis, we keep only the leading lepton flavour violation term A_{ℓ} for simplicity, i.e., $\kappa_2 = 0$. Turning to the lepton mass eigenbasis, the current $\bar{l}\gamma^{\mu}Cl$ gives in the MFV hypothesis the following interactions:

$$
\bar{e}_L \gamma^\mu (\kappa_0 \mathbb{1} + \kappa_0 \Delta_\ell) e_L + \bar{\nu}_L \gamma^\mu (\kappa_0 \mathbb{1} + \kappa_0 \hat{\lambda}_\nu^2) \nu_L, \tag{2.22}
$$

where the basic LFV coupling Δ_{ℓ} can be obtained from A_{ℓ} and takes the form

$$
\Delta_{\ell} = U \hat{\lambda}_{\nu}^2 U^{\dagger},\tag{2.23}
$$

 $\Delta_{\ell}^{\text{NO}} = \begin{pmatrix} -0.19 - 0.01i & -0.25 - 0.02i & 0.31 - 0.04i \\ 0.12 + 0.01i & 0.28 - 0.00i & 0.29 + 0.04i \\ -0.37 - 0.01i & 0.21 - 0.05i & -0.03 + 0.01i \end{pmatrix}, \quad \Delta_{\ell}^{\text{IO}} = \begin{pmatrix} 0.21 + 0.09i & -0.34 + 0.05i & 0.03 + 0.11i \\ 0.31 + 0.12i & 0.19 +$

