

李佩莲(UCAS) *on behalf of the LHCb collaboration

四届全国粒子物理大会

山东·青岛, 2024-08-16

中国物理学会高能物理分会 HIGH ENERGY PHYSICS BRANCH OF CPS

Time-dependent measurements of CP Violation at LHCb

Introduction

- \odot Time-dependent CPV in B sector
- Time-dependent CPV in charm sector
- Summary

P. Li · Time-dependent CPV at LHCb · 2024-08-16

CKM matrix

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^5) \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$

Key test of the SM: Verify unitarity of CKM matrix
Magnitudes: branching fractions or mixing frequencies
Phases: CP violation measurement
Sensitive probe for new physics

P. Li · Time-dependent CPV at LHCb · 2024-08-16

excluded area has CL > 0.95

1.5

$$_{d}V_{cb}^{*}$$
) see Xiaokang Zhou's talk later

Neutral meson oscillation

• Neutral $B_{(s)}^0$ mesons can oscillate through box diagrams

P. Li · Time-dependent CPV at LHCb · 2024-08-16

Neutral meson oscillation

• Neutral $B_{(s)}^0$ mesons can oscillate through box diagrams

• Mass eigenstates (*H*, *L*) are admixtures of the flavor eigenstates $|B_{a,L/H}^{0}\rangle = p |B_{q}^{0}\rangle \pm q |\bar{B}_{q}^{0}\rangle$

• Mass difference $\Delta m_{(s)} = M_H - M_L = 2 |M_{12}| \rightarrow \text{oscillation frequency!}$ • Decay-width difference $\Delta \Gamma_{(s)} = \Gamma_L - \Gamma_H = 2 |\Gamma_{12}| cos \phi_{\text{mixing}}$

P. Li · Time-dependent CPV at LHCb · 2024-08-16

• Time evolution:

$$\begin{array}{c} \bullet \\ \overline{B}_{s}^{0} \\ \hline B_{s}^{0} \\ \hline \end{array} \\
-i \frac{d}{dt} \left(\begin{vmatrix} B_{s}^{0}(t) > \\ |\overline{B}_{s}^{0}(t) > \end{matrix} \right) = \left(\mathbf{M} - \frac{i}{2} \Gamma \right) \left(\begin{vmatrix} B_{s}^{0}(t) > \\ |\overline{B}_{s}^{0}(t) > \end{matrix} \right)$$

$$(p,q \in \mathbb{C}, |p|^2 + |q|^2 = 1)$$

 $\rightarrow |p/q| = 1$ if CP conserved in mixing

Measurement of $B_{s}^{0} - \bar{B}_{s}^{0}$ oscillations

• Flavour at production (*t=0*) could be difference from flavour at decay time t

 $|B_{S,H/L}^{0}(t)\rangle = e^{-iM_{H/L}}$

• $\Delta m_s = (17.7656 \pm 0.0057)$ ps⁻¹, most precise measurement to date!

Nat. Phys. 18(2022)1-5

P. Li · Time-dependent CPV at LHCb · 2024-08-16

$$L^{t-\Gamma_{H/L}t/2} | B^0_{s,H/L} \rangle$$

Effective lifetime measurements in $B_{\rm c}^0 \to J/\psi \eta'$

• Simultaneous analysis of *CP*-even decay $B_s^0 \to J/\psi(\mu^+\mu^-)\eta'(\pi^+\pi^-\gamma)$ and *CP*-odd decay $B_s^0 \to J/\psi \rho^0$ to determine $\Delta \Gamma_s$ • Fit to the ratio of decay time R(t) in 8 bins

$$R(t) = A_r(t) \cdot \frac{N_{\rm L}}{N_{\rm H}}$$

Agree with the World Average: $0.074 \pm 0.006 \text{ ps}^{-1}$

P. Li · Time-dependent CPV at LHCb · 2024-08-16

JHEP 05 (2024) 253

CP violation in $B_{(s)}^0$ system

- OP-violating nature of weak interaction has multiple manifestations
- Requires two interfering amplitudes with different strong and weak phases

CP violation in mixing Unequal transition probabilities between flavour eigenstates В $P(B \rightarrow \overline{B}) \neq P(\overline{B} \rightarrow B)$ q/p

P. Li · Time-dependent CPV at LHCb · 2024-08-16

CP violation in interference of decays with/without mixing

Time-dependent or time-integrated difference of decay rates of initial flavour eigenstates $\Gamma(B_{(\to\overline{B})} \to f_{CP})(t) \neq \Gamma(\overline{B}_{(\to\overline{B})} \to f_{CP})(t)$

CP violation in $B_{(s)}^0$ system

- OP-violating nature of weak interaction has multiple manifestations
- Requires two interfering amplitudes with different strong and weak phases

P. Li · Time-dependent CPV at LHCb · 2024-08-16

CP violation in interference of decays with/without mixing

Time-dependent or time-integrated difference of decay rates of initial flavour eigenstates $\Gamma(B_{(\rightsquigarrow\overline{B})} \to f_{CP})(t) \neq \Gamma(\overline{B}_{(\rightsquigarrow B)} \to f_{CP})(t)$

Time-dependent CP asymmetry

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^{0}_{(s)} \to f}(t) - \Gamma_{B^{0}_{(s)} \to f}(t)}{\Gamma_{\bar{B}^{0}_{(s)} \to f}(t) + \Gamma_{B^{0}_{(s)} \to f}(t)}$$

$$C_f \equiv \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2},$$

$$S_f \equiv \frac{2 \mathrm{Im} \lambda_f}{1 + |\lambda_f|^2}$$

P. Li · Time-dependent CPV at LHCb · 2024-08-16

$$= \frac{-C_f \cos(\Delta m_{d(s)}t) + S_f \sin(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right)}$$

$$A_f^{\Delta\Gamma} \equiv -\frac{2\text{Re}\lambda_f}{1+|\lambda_f|^2} \qquad \lambda_f \equiv \frac{q}{p}\frac{A_f}{A_f}$$

- CPV in decay or mixing if $|\lambda_f| \neq 1$ - For $b \rightarrow c\bar{c}q$ transition, $S_f \approx \sin 2\beta_{(s)}$

Time-dependent CP asymmetry

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^{0}_{(s)} \to f}(t) - \Gamma_{B^{0}_{(s)} \to f}(t)}{\Gamma_{\bar{B}^{0}_{(s)} \to f}(t) + \Gamma_{B^{0}_{(s)} \to f}(t)}$$

Experimentally

 $A_{CP}(t) \propto e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot (0$

- Flavour tagging of $B_{(s)}^0$ at production: probability of wrong tag ω
- Excellent decay-time resolution σ_t (vertex resolution)
- *CP* eigenvalue of the final state η_f

P. Li · Time-dependent CPV at LHCb · 2024-08-16

$$=\frac{-C_f \cos(\Delta m_{d(s)}t) + S_f \sin(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d(s)}}{2}t\right)}$$

$$A_f^{\Delta\Gamma} \equiv -\frac{2\text{Re}\lambda_f}{1+|\lambda_f|^2} \qquad \lambda_f \equiv \frac{q}{p}\frac{A_f}{A_f}$$

- CPV in decay or mixing if $|\lambda_f| \neq 1$ - For $b \to c\bar{c}q$ transition, $S_f \approx \sin 2\beta_{(s)}$

$$C_f \cos(\Delta m_{(s)}t) + \eta_f S_f \sin(\Delta m_{(s)}t))$$

Flavour tagging

A ML-based statistical tool enables the identification of the B production flavour, allowing us to measure interference CP violation

P. Li · Time-dependent CPV at LHCb · 2024-08-16

$$\mathcal{A}^{CP} = \frac{\Gamma(\overline{B}^{0}_{(s)} \to f_{CP}) - \Gamma(\overline{B}^{0}_{(s)} \to f_{CP})}{\Gamma(\overline{B}^{0}_{(s)} \to f_{CP}) + \Gamma(\overline{B}^{0}_{(s)} \to f_{CP})}$$

- Same-side (SS) tagging: Use charge of K/π produced in the fragmentation
 - Opposite-side (OS) tagging: charge of leptons or hadrons from the other b hadrons
- same side opposite side
- OS kaon

OS muon OS electron

Flavour tagging

A ML-based statistical tool enables the identification of the B production flavour, allowing us to measure interference CP violation

same side

P. Li · Time-dependent CPV at LHCb · 2024-08-16

$$\mathcal{A}^{CP} = \frac{\Gamma(\overline{B}^{0}_{(s)} \to f_{CP}) - \Gamma(\overline{B}^{0}_{(s)} \to f_{CP})}{\Gamma(\overline{B}^{0}_{(s)} \to f_{CP}) + \Gamma(\overline{B}^{0}_{(s)} \to f_{CP})}$$

- Same-side (SS) tagging: Use charge of K/π produced in the fragmentation
- Opposite-side (OS) tagging: charge of leptons or hadrons from the other *b* hadrons

power	$B^0 o \psi K^0_S$	$B_s^0 ightarrow J/\psi KK$	$B_s^0 \to q$
$(2\omega)^2$	(4-6)%	4.3%	6%

* tagging efficiency ϵ_{tag} , mistag rate ω

Decay-time resolution

- Significant for B_s^0 system, negligible for B^0

$$\delta_t^2 = (\frac{m}{p})^2 \sigma_L^2 + (\frac{t}{p})^2 \sigma_p^2 \sim 200 \,\mu m \quad \sigma_p / p \sim 0.4 \,\%$$

P. Li · Time-dependent CPV at LHCb · 2024-08-16

Decay-time resolution

- Significant for B_s^0 system, negligible for B^0

$$\delta_t^2 = (\frac{m}{p})^2 \sigma_L^2 + (\frac{t}{p})^2 \sigma_p^2$$

~ 200 \mu m \sigma_p / p \sigma 0.4 \%

• Effective Gaussian resolution model: σ_{eff} as a function of δ_t (11 bins)

$$\sigma_{eff}(B_s^0) \sim 43 \text{ fs} \rightarrow \mathcal{D} = 0.757$$

$$\sigma_{eff}(B^0) \sim 60 \text{ fs} \rightarrow \mathcal{D} \sim 1$$

P. Li · Time-dependent CPV at LHCb · 2024-08-16

 $\sin 2\beta$

• Decay mode $B^0 \to \psi K^0_S$ (CP-odd only) offers a theoretically clean access to the CKM angle β

 $A_{CP}(t)$ =

(penguin contributions $\Delta \phi_d \sim 0.5 \text{ deg}$) $\gamma \Delta m_d \& \Delta m_s$ CKM fitter Spring 21 0.6 0.5 sol. w/ cos 2β < 0 (excl. at CL > 0.95)

P. Li · Time-dependent CPV at LHCb · 2024-08-16

$$= \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \propto -\eta_f \cdot \sin 2\beta \cdot \sin(\Delta mt)$$

 $\sin 2\beta$

• Decay mode $B^0 \to \psi K^0_{S}$ (CP-odd only) offers a theoretically clean access to the CKM angle β

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \propto -\eta_f \cdot \sin 2\beta \cdot \sin(\Delta mt)$$

 Consistent with other measurements, still statistical uncertainty limited LHCb results dominate the latest World Average

(penguin contributions $\Delta \phi_d \sim 0.5 \text{ deg}$)

P. Li · Time-dependent CPV at LHCb · 2024-08-16

P. Li · Time-dependent CPV at LHCb · 2024-08-16

Phys. Rev. Lett. 132 (2024) 051802

$$q_P(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \propto -\eta_f \cdot \sin\phi_s \cdot \sin(\Delta m_s t)$$

P. Li · Time-dependent CPV at LHCb · 2024-08-16

$$P(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} \propto -\eta_f \cdot \sin\phi_s \cdot \sin(\Delta m_s t)$$

$\phi_{\rm s}$ in $b \rightarrow s\bar{s}s$ transition

- Benchmark channel $B_s^0 \to \phi(KK)\phi(KK)$ proceeds via $b \rightarrow s\bar{s}s$ transition
 - Penguin dominated decay
 - NP contributes in penguin or mixing process
- Similar analysis strategy as $B_s^0 \to J/\psi \phi(KK)$

$$\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rs}$$
$$|\lambda| = 1.004 \pm \pm 0.030 \pm 0.009$$

- The most precise measurement in any penguin dominated *B* decays
- No polarisation dependence is observed

P. Li · Time-dependent CPV at LHCb · 2024-08-16

Phys. Rev. Lett. 131 (2023) 171802

CP violation in charm sector

- GIM mechanism very effective for charm decays, SM loops highly suppressed
- Tiny weak phases in first two generations of CKM matrix ($< \lambda b \sim 0.1\%$)
- Oscillation and CPV ($\leq 10^{-3}$)
- Long distance contribution comparable/larger than short distance

CP violation in charm sector

- GIM mechanism very effective for charm decays, SM loops highly suppressed
- Tiny weak phases in first two generations of CKM matrix ($< \lambda b \sim 0.1\%$)
- Oscillation and CPV ($\leq 10^{-3}$)
- Long distance contribution comparable/larger than short distance

Breakthroughs by LHCb thanks to huge statistics: First observation of CPV in $D^0 \rightarrow h^+h^-$ decays $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4} \text{ [PRL(2019)211803]}$ Evidence of CPV in $D^0 \rightarrow \pi^+\pi^-$ decay $A_{CP}(\pi^+\pi^-) = (23.2 \pm 6.1) \times 10^{-4} (3.8\sigma)$ [PRL(2023)211803]

P. Li · Time-dependent CPV at LHCb · 2024-08-16

Time-dependent CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

First measurement of time-dependent CP violation in SCS mode

P. Li · Time-dependent CPV at LHCb · 2024-08-16

arXiv:2405.06556

$$A_{\text{meas}}(\langle t/\tau_{D^0} \rangle_i) \equiv \frac{N_{D^0}^i - N_{\bar{D}^0}^i}{N_{D^0}^i + N_{\bar{D}^0}^i}$$

Time-dependent CP violation in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

First measurement of time-dependent CP violation in SCS mode

P. LI \cdot Ime-dependent UP v at LHUD \cdot 2024-00-10

arXiv:2405.06556

$$\Delta Y_{f_{CP}} \approx \frac{\eta_{f_{CP}}}{2} \left[\left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) x \sin \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) y \right] \right]$$

$$\Delta Y \equiv \eta_{CP} \Delta Y_{f_{CP}} = (-1.3 \pm 6.3 \pm 2.4) \times 10^{-2}$$

Time-dependent CP violation in $D^0 \rightarrow K\pi$

Interference between mixing and decay for favoured RS and suppressed WS decays

DCS over CF amplitude $R_{K\pi}^{\pm}(t) pprox R_{K\pi} \left(1 \pm A_{K\pi}\right) + R_{K\pi} \left(1 \pm A_{K\pi}
ight)$

CPV observables: $A_{K\pi}$ (in decays), $\Delta c_{K\pi}$ (in interference), $\Delta c'_{K\pi}$ (in mixing). Mixing observables: $c_{K\pi}$, $c'_{K\pi}$

P. Li · Time-dependent CPV at LHCb · 2024-08-16

$$\left(\mathbf{c}_{\mathbf{K}\pi} \pm \Delta \mathbf{c}_{\mathbf{K}\pi} \right) \left(\frac{t}{\tau_{D^0}} \right) + \left(\mathbf{c}_{\mathbf{K}\pi}' \pm \Delta \mathbf{c}_{\mathbf{K}\pi}' \right) \left(\frac{t}{\tau_{D^0}} \right)$$

Time-dependent CP violation in $D^0 \to K\pi$

Measured with yields: RS ~400 M, WS ~1.6 M

P. Li · Time-dependent CPV at LHCb · 2024-08-16

arXiv:2407.18001

 $c_{K\pi} \approx y_{12} \cos \phi_f^{\Gamma} \cos \Delta_f + x_{12} \cos \phi_f^M \sin \Delta_f$

P. Li · Time-dependent CPV at LHCb · 2024-08-16

P. Li · Time-dependent CPV at LHCb · 2024-08-16

Summary

In LHCb dominates the world average of many measurements in CKM and CPV LHCb data sample, providing the most precise results

P. Li · Time-dependent CPV at LHCb · 2024-08-16

- ✓ Flag-ship time-dependent measurement of CP violation in $B_{(s)}^0$ and D^0 decays with full
- Icon Run 3 is running, looking forward to further test of the SM and search for new physics

Back up slides

P. Li · Time-dependent CPV at LHCb · 2024-08-16

LHCb performance: JINST 14 (2019) P04013

 θ_1 [rad]

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays: $p_T \sim \mathcal{O}(1 \text{ GeV}/c)$, flight distance L~1mm

uty and charm hadrons eV/c), flight distance L~1mm

 $2 < \eta < 5$

LHCb performance: JINST 14 (2019) P04013

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays: $p_T \sim \mathcal{O}(1 \text{ GeV}/c)$, flight distance L~1mm

uty and charm hadrons eV/c), flight distance L~1mm

 $2 < \eta < 5$

LHCb performance: JINST 14 (2019) P04013

General purpose detector specialised in beauty and charm hadrons

• Daughters of b & c hadron decays: $p_T \sim \mathcal{O}(1 \text{ GeV}/c)$, flight distance L~1mm

uty and charm hadrons eV/c), flight distance L~1mm

 $2 < \eta < 5$

LHCb performance: JINST 14 (2019) P04013

Control of penguin contribution

- $\sigma(\phi_s) \sim 0.016$ comparable with the theoretical estimation of $\Delta \phi_s^{penguin} \sim 1^\circ \approx 0.017$, better control of penguin effect necessary
- Combined analysis of penguin contributions in ϕ_s and ϕ_d (sin 2 β), using SU(3) flavour symmetry

$$egin{aligned} \phi_d &= ext{sin}(2eta^{ ext{tree}}) + \Delta \phi_d^{ ext{penguin}} + \phi_d^{ ext{NP}} \ \phi_s &= \phi_s^{ ext{tree}} + \Delta \phi_s^{ ext{penguin}} + \phi_s^{ ext{NP}} + \phi_s^{ ext{NP}} \end{aligned}$$

J.Phys.G 48 (2021) 6, 065002

P. Li · Time-dependent CPV at LHCb · 2024-08-16

CP asymmetry in $B_{(s)}^0 \rightarrow h^+h^-$

- Simultaneous fit to the invariant mass, $B^0_{(s)}$ decay time and tagging decision for $B^0 \to \pi^+ \pi^-, B^0_s \to K^+ K^-, B^0_{(s)} \to K \pi$, providing constraints to α, γ , $\sin 2\beta_s$
- The first observation of time-dependent *CP* violation in B_{c}^{0} decay

CP asymmetry in $B_{(s)}^0 \rightarrow h^+h^-$

- Simultaneous fit to the invariant mass, $B^0_{(s)}$ decay time and tagging decision for $B^0 \to \pi^+ \pi^-, B^0_s \to K^+ K^-, B^0_{(s)} \to K \pi$, providing constraints to α, γ , $\sin 2\beta_s$
- The first observation of time-dependent CP violation in B_s^0 decay

Effective lifetime measurements in $B_s^0 \rightarrow J/\psi\eta$

- *CP*-even decay $B_s^0 \to J/\psi(\mu^+\mu^-)\eta(\gamma\gamma)$ allows to determine $\tau_L = 1/\Gamma_L$
- Simultaneous fit to invariant mass and decay time

P. Li · Time-dependent CPV at LHCb · 2024-08-16

EPJC83 (2023) 629

Agree with the SM prediction and other measurements

