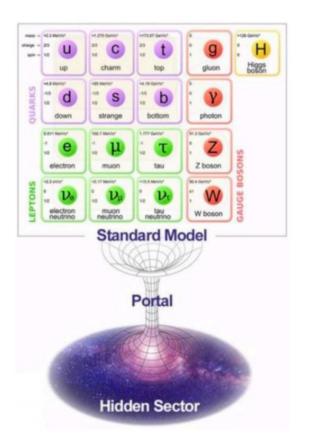
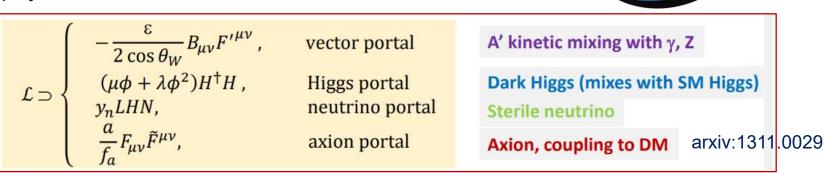


Search for dark sector at BESIII

Yu Zhang (南华大学)
for the BESIII Collaboration
yuzhang@usc.edu.cn


第十四届全国粒子物理学术会议 山东大学 16/08/2024

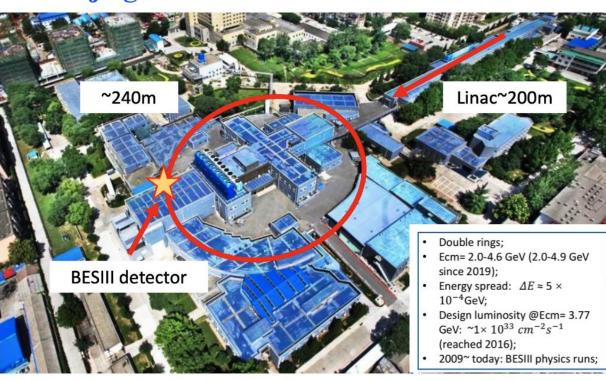

Outline

- Introduction
- BESIII experiment
- Search for muonphilic vector/scalar
- Search for axion-like particles
- Search for dark photons
- Summary

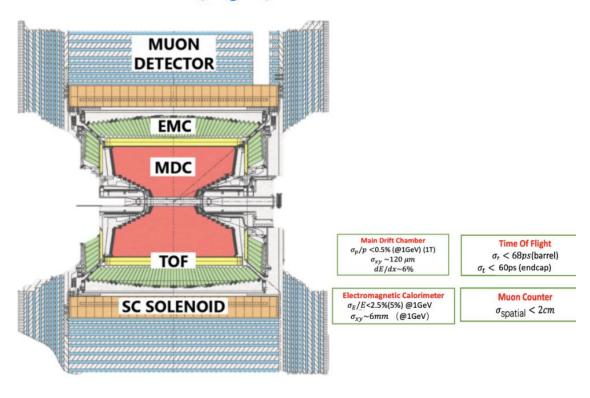
Dark matter interacting with SM

- Amounts 27% of the total matter density of the universe
- Not interact with strong and electromagnetic interactions
- Explain the features of astrophysical observations

- Dark matter has not seen yet in particle physics experiments
- One of the simplest models is "DM hidden sector" that allows the coupling between DM and SM particles via the so called "portals"
- "Portal" interactions are accessible by high intensity e+ecollider experiments, such as BESIII experiment, if their masses are ~GeV

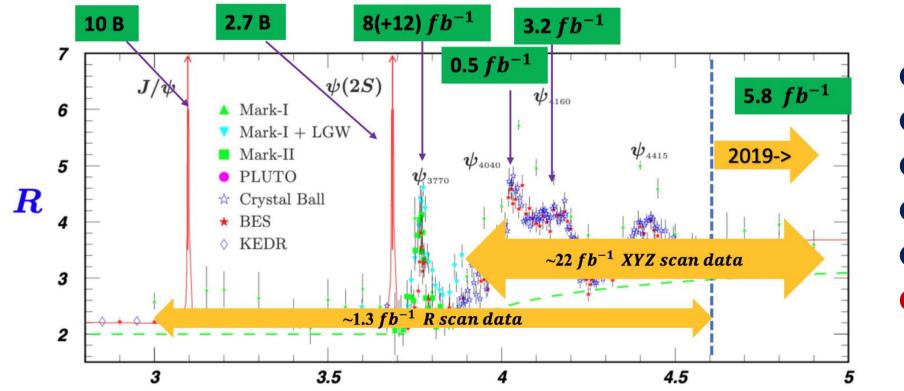

Normal matter

68%


Dark Energy

BESIII experiment

Beijing Electron-Positron Collider II


Beijing Spectrometer III

A symmetric e^+e^- collider running at tau-charm (2-5 GeV) region

BESIII data sets

- World's largest data samples in tau-charm region
- 10 billion J/ ψ , 2.7 billion ψ (3686) and 20 fb⁻¹ ψ (3770) on threshold

- Charmonium
- XYZs
- Charm physics
- Light hadron
- Tau physics
- New physics

Exotic particles search at BESIII

Axion-like particles (ALP)

With ψ (2S) data set

●PLB 838 (2023) 137698

With J/ψ data set

●PRD 110 (2024) L031101

Invisible decays

Invisible muon philic scalar/vector

●PRD 109 (2024) L031102

 Σ^+ \rightarrow proton+invisible

●PLB 852 (2024) 138614

Λ baryon

●PRD 105 (2022) L071102

 ω/ϕ mesons

●PRD 98 (2018) 032001

 η/η' mesons

●PRD 87 (2013) 012009

Dark matter portals

Light CP-odd higgs boson

Visible decay

- PRD 105 (2022) 012008
- PRD 93 (2016) 052005
- PRD 85 (2012) 092012

Invisible decay

• PRD 101 (2020) 112005

Dark photon

ISR process

- ●PLB 839 (2023) 137785 (invisible)
- ●PLB 774 (2017) 252 (visible)

With J/ψ data set

- ●PRD 99 (2019) 012013
- ●PRD 99 (2019) 012006
- ●PRD 102 (2020) 052005

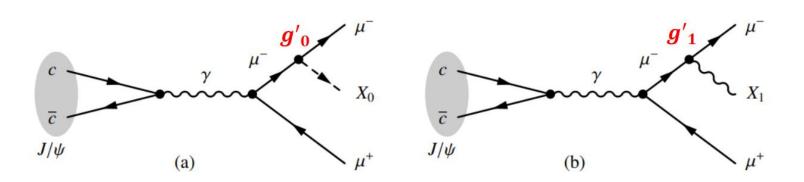
Massless dark photon

●PRD 106 (2022) 072008

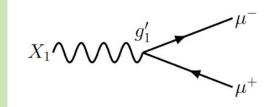
Heavy Majorana neutrino

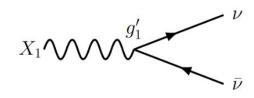
•PRD 99 (2019) 112002

Muonphilic scalar/vector $X_{0/1}$


- ullet Proposed as a explanation to the $(g-2)_{\mu}$ anomaly
- \bullet A minimal extention of U(1) group is added to the SM
- $U(1)_{L_u-L_\tau}$ model:

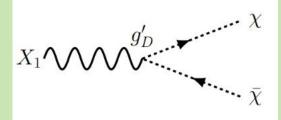
JHEP 10 (2020) 207


a massive scalar X_0 or vector X_1 boson couples only with the 2^{nd} and 3^{rd} generation leptons $\mathcal{L}_{\mu}^{\text{scalar}} = -g_0 X_0 \overline{\mu} \mu$, $\mathcal{L}_{\mu}^{\text{vector}} = -g_1 X_1 \overline{\mu} \gamma \mu$


• Can be studied with $J/\psi \to \mu^+\mu^- X_{0/1}$

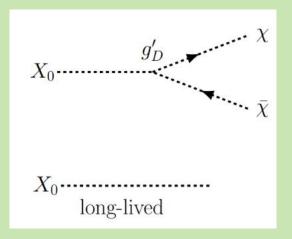
Three model scenarios

"Vanilla" $L_{\mu} - L_{\tau}$ model



 X_1 only couples to SM particles

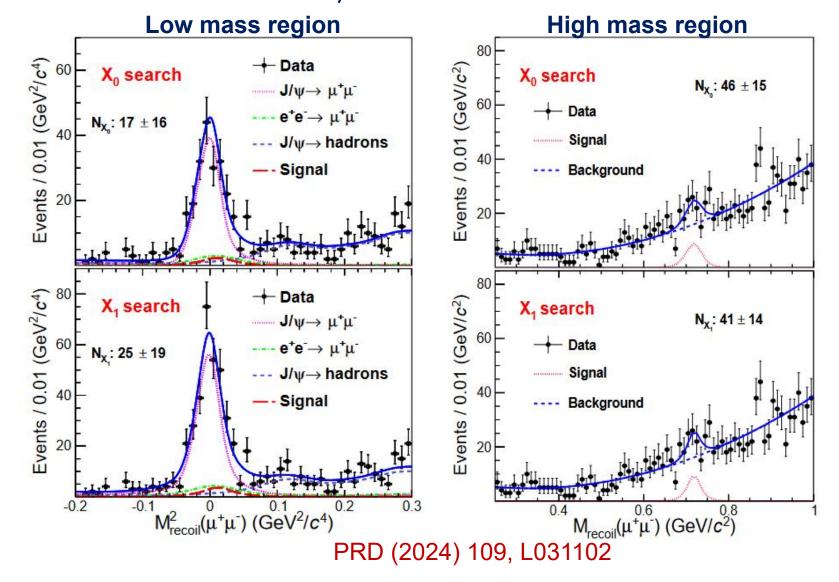
$$BF(X_1 \to \nu \nu) \sim (33 - 100)\%$$


Invisible $L_{\mu} - L_{\tau}$ model

Dark matter particle χ couples to X_1 with strength $g_D^{'}$ $m_{\chi} < m_{X_1^{'}}/2$ $g_D^{'} \gg g_1^{'}$

$$BF(X_1 \to \chi \overline{\chi}) \sim 100\%$$

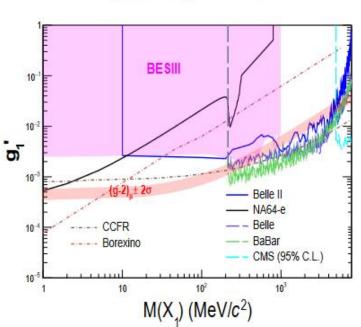
Scalar U(1) model


Dark matter particle χ couples to X_0 with strength $g_D^{'}$ X_0 is long lived or only decays to invisible final states

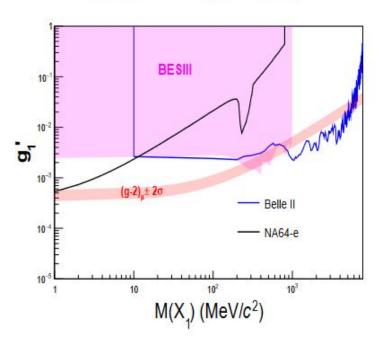
Search for $J/\psi \rightarrow \mu^+\mu^- X_{0/1}$

Search for $X_{0/1}$ in the mass region 1 MeV - 1 GeV

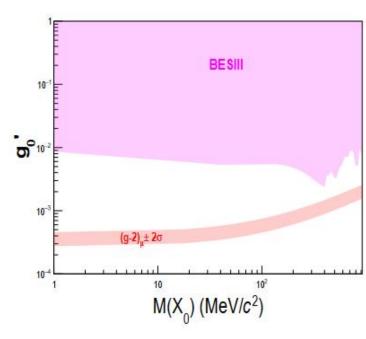
No evidence for the signals of $X_{0/1}$ invisible decay


Maximum local significance is 2.5σ at $0.72~{\rm GeV}/c^2$

Upper limits on the couplings

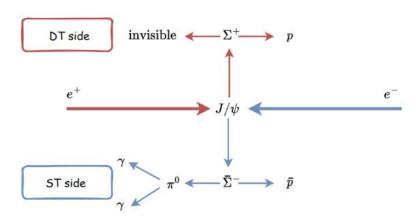

PRD (2024) 109, L031102

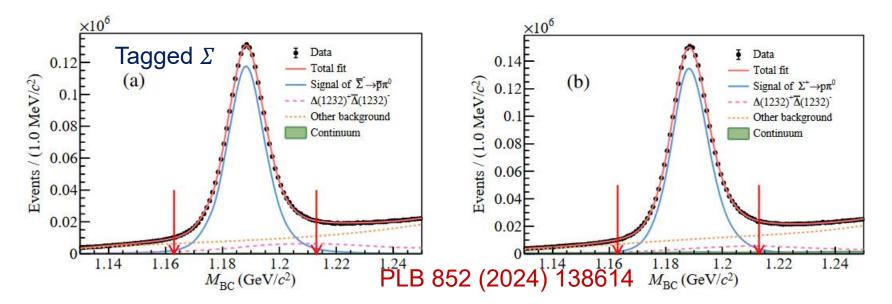
"vanilla" $L_{\mu} - L_{\tau}$ model


BESIII, BelleII, NA64-e: $X_1 \rightarrow \nu\nu$ BABAR, CMS, Belle: $X_1 \rightarrow \mu^+\mu^-$

"invisible" $L_{\mu} - L_{\tau}$ model

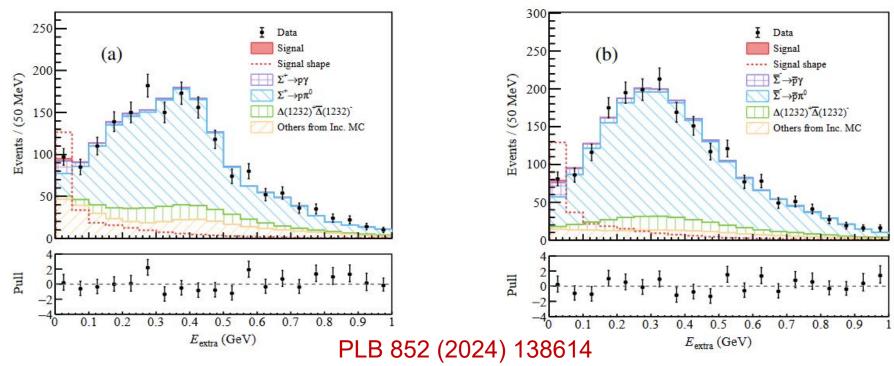
BESIII provides best sensitivity in 200-860 MeV/c^2


"scalar" U(1) model

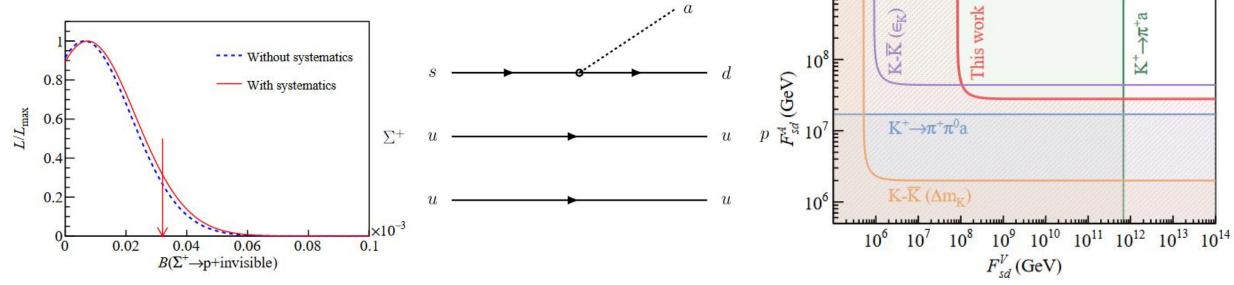

BESIII perform the first direct search for the scalar

Search for $\Sigma^+ \rightarrow proton+invisible$

- Multiple new physics effects can enter the signal decay
 - FCNC process $s \rightarrow d\nu\nu$
 - Massless dark photon, QCD axion...
- 10 million pairs of $\Sigma^+ \overline{\Sigma}^-$ are produced (10 billion J/ ψ decays)



ullet Enables studies of decays with "missing" particles by tagging one $\Sigma o p\pi$


Search for $\Sigma^+ \rightarrow proton+invisible$

- Count the energy deposit in electro-magnetic calorimeter
- A unique method at electron-positron colliders

- Anti-protons are more likely to interact with detector materials, causing the energy deposit larger than proton
- Requires data-driven method to model the background

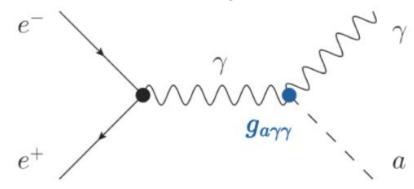
Search for $\Sigma^+ \rightarrow proton+invisible$

PLB 852 (2024) 138614

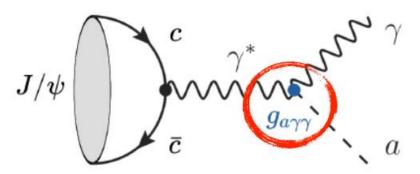
$$\Gamma(\Sigma^{+} \to pa) = \frac{M_{\Sigma^{+}}^{3}}{16\pi} \left(1 - \frac{M_{p}^{2}}{M_{\Sigma^{+}}^{2}}\right)^{3} \left(\frac{(-1)^{2}}{|F_{sd}^{V}|^{2}} + \frac{0.34^{2}}{|F_{sd}^{A}|^{2}}\right)^{3}$$
PRD 102 (2020) 015023

- First upper limit of the decay branching fraction is reported ($< 3.2 \times 10^{-5}$ at 90% CL.)
- Complementes other searches for the QCD axion with tiny mass (<1 eV) and long lifetime (PLB 169 (1986) 73), also constraints massless dark photon models

Search for an axion-like particle


- An axion-like particle (ALP)
 - is a pseudo-scalar particle
 - introduced by the spontaneous breaking of Peccei-Quinn symmetry to solve the strong CP problem of the QCD

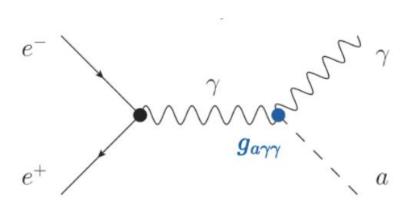
```
Phys. Rev. Lett. 40, 223 (1978); Phys. Rev. Lett. 40, 279 (1978)
Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977)
```

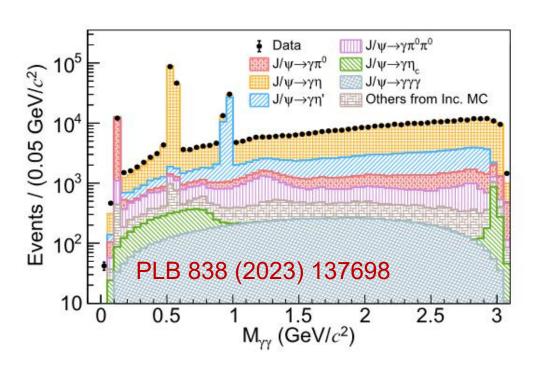

- predicted by many models beyond the SM and proposed to be a cold DM candidate
- ullet couples to a pair of photons with ALP-photon coupling $g_{\,a\gamma\gamma}$
- experimental bounds on $g_{a\gamma\gamma}$ with m_a range of MeV/ c^2 -GeV/ c^2 , mainly constrained by e^+e^- colliders

Phys. Lett. B 753, 482 (2016)

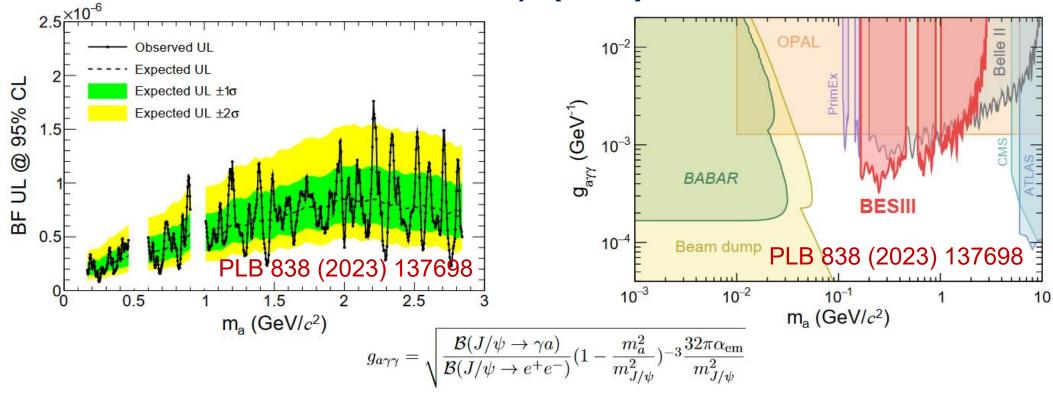
ALP-Strahlung process

Radiative decay



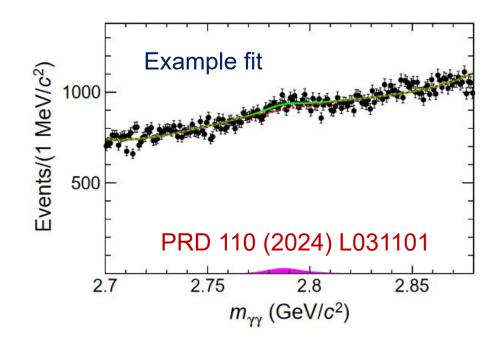

JHEP 06 (2019) 091

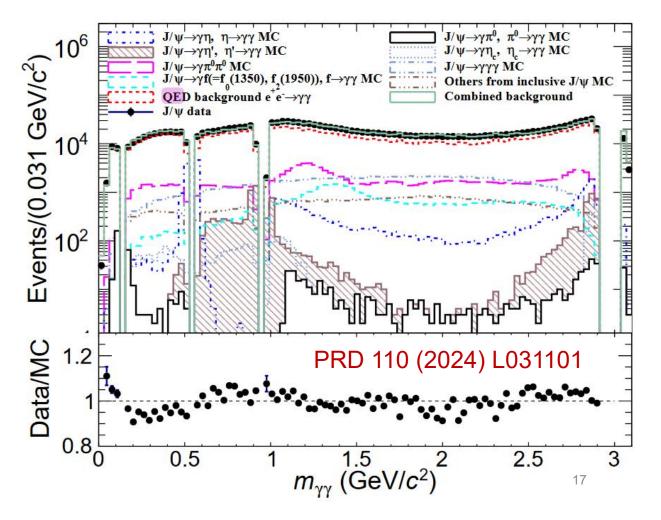
Search for ALP with ψ (2S) data


• Using 2.7 billion $\psi(2S)$ data, BESIII has set one of the best limits on $g_{a\gamma\gamma}$ via $J/\psi \to \gamma a (\to \gamma \gamma)$

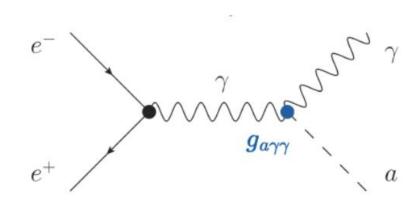
 Can avoid the pollution of non-resonant production and QED background

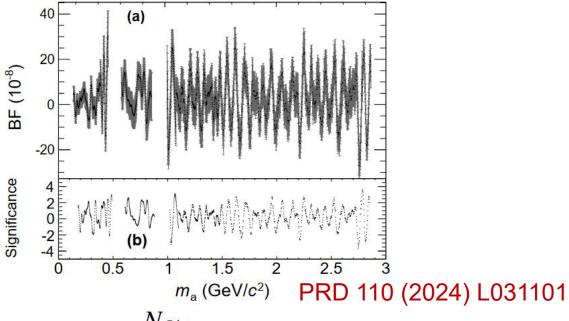
Search for ALP with ψ (2S) data

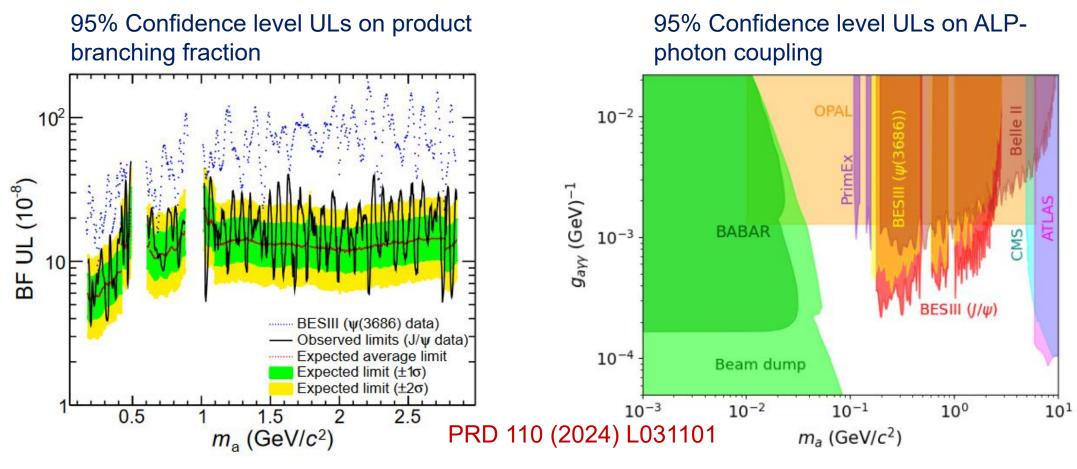

- Limits at $10^{-6} 10^{-8} / \text{GeV}$ level
- ullet Most stringent constraints on $g_{a\gamma\gamma}$ in the m_a rangle [0.165, 1.468] GeV/ c^2 up-to-date
- Can be further improved with 10 billion of BESIII J/ ψ data, which can include both radiative J/ $\psi \rightarrow \gamma a$ and ALP-strahlung process $e^+e^- \rightarrow \gamma a$


Expected pollution of ALP-strahlung process $e^+e^- \rightarrow \gamma a$ in $J/\psi \rightarrow \gamma a$

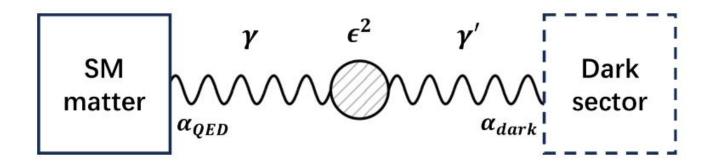
Search for ALP with J/ ψ data $^{J/\psi}$

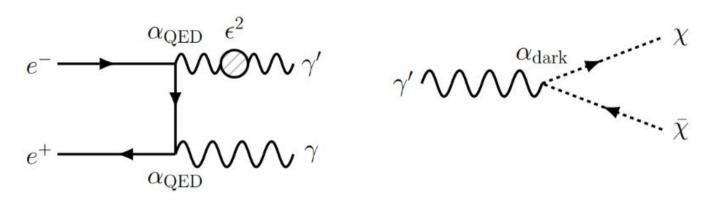

 $\begin{array}{c}
c \\
\gamma^* \\
\overline{c}
\end{array}$


- Using 10 billion J/ ψ data, BESIII has the best limits on $g_{a\gamma\gamma}$ via J/ $\psi \to \gamma a (\to \gamma \gamma)$
- Huge but flat QED background (estimated with continuum data), found to have minimal effect on signal

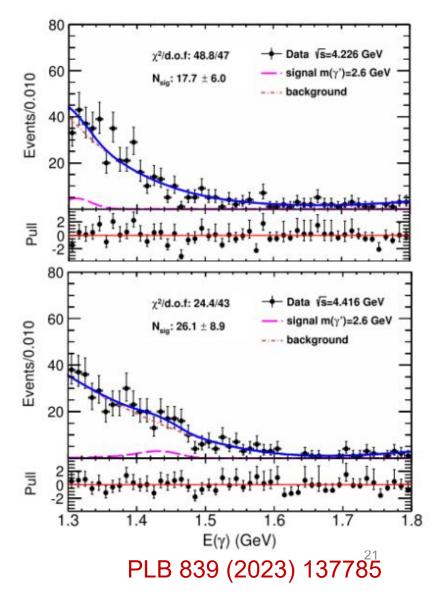

Search for ALP with J/ψ data

- Background of ALP-Strahlung process is estimated with $\sigma_a^{rad} = \frac{NJ/\psi}{L_{J/\psi}} \mathcal{B}(J/\psi \to \gamma a)$ and taken as a systematic uncertainty of 4.4%
- Uncertainty associated with the fit model is estimated by varying the paraterized PDFs of signal and background, which is 9.2%
- •At a given mass point $m_a = 2.786 \text{ GeV}/c^2$, the global significance is 1.6sigma \rightarrow no significant signal has been found


Search for ALP with J/ψ data


These results supersedes the previous BESIII (Belle-II) search by 3 (5) times Phys. Lett. B 838, 137678 (2023); Phys. Rev. Lett. 125, 161806 (2020)

Search for massive dark photon


- Extra gauge group $U(1)_D$
 - The associated gauge boson is the dark photon
 - Massive if the symmetry is spontaneously broken
- Dark photon has a kinetic mixing with the SM photon $\frac{1}{2} \varepsilon F_{\mu\nu}^{'} F^{\mu\nu}$
- ullet Effective coupling strength with SM matter e arepsilon
- Can be produced in any process by replacing the SM photon

Search for massive dark photon in $e^+e^- o \gamma\gamma'$

- ullet γ' predominantly decays to $\chi \overline{\chi}$ if $m_{\chi} < m_{\gamma'}/2$
- Search for a peak in the SM γ energy spectrum $E_{\gamma} = \frac{s m_{\gamma}^2}{2\sqrt{s}}$
- 14.9 fb⁻¹ data samples between \sqrt{s} =4.13-4.60 GeV
- ullet Scan of $m_{\gamma'}$ in [1.5, 2.9] GeV
- Maximum global significance is 2.2σ

Constraint on mixing parameter ε

$$\sigma(e^{+}e^{-} \rightarrow \gamma \gamma') = \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right) \times \left(1 + \frac{2\frac{m_{\gamma'}^{2}}{s}}{\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2}}\right) \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

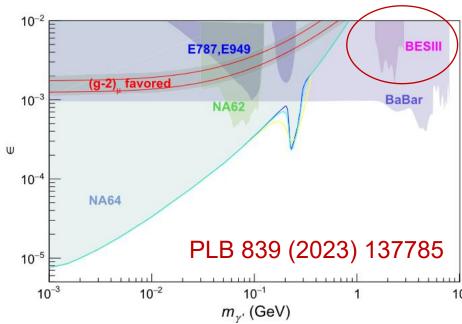
$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$


$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} \log\frac{(1 + \cos\theta_{c})^{2}}{(1 + \cos\theta_{c})^{2}} - 2\cos\theta_{c}$$

$$= \frac{2\pi\alpha^{2}}{s}\epsilon^{2}\left(1 - \frac{m_{\gamma'}^{2}}{s}\right)^{2} - 2\cos\theta_{c}$$

$$= \frac{2$$

BESIII will produce more competitive constraints with 20 ${\rm fb^{-1}}$ data at 3.773 GeV and other points

Summary

- BESIII has a good potential to search for BSM physics with a clean collision environment, is especially ideal for decays with neutral and "missing" particles
- The searches performed so far have significantly constrained the allowed phase space of theoretical models
 - Muonphilic particles, ALPs...
- More results will come soon by analysing the 10 billion J/ ψ , 2.7 billion $\psi(3686)$ and 20 fb⁻¹ $\psi(3770)$ decays

Thanks!