Pion Axioproduction Revisited

Cheng-Cheng Li, Tao-Ran Hu, Feng-Kun Guo, and Ulf-G. Meißner Phys. Rev. D **109**, 075050

李澄诚

ITP 2024/08/16

Origin of Axion

SM: other terms + $\bar{\theta}G\tilde{G}$

SM extended with axion: other terms $+\frac{1}{2}\partial_{\mu}a\partial^{\mu}a + \left(\frac{a}{f_a} + \bar{\theta}\right)G\tilde{G}$

CP-violated

Origin of Axion

SM: other terms + $\bar{\theta}G\tilde{G}$

SM extended with axion: other terms $+\frac{1}{2}\partial_{\mu}a\partial^{\mu}a + \left(\frac{a}{f_a} + \bar{\theta}\right)G\tilde{G}$

minimizing the vacuum energy leads to $\langle a/f_a \rangle = -\bar{\theta}$ perform the axion field shift, $a \to a - \bar{\theta} f_a$, and other field transformations

CP-symmetric

CP-violated

SM extended with axion: other terms $+\frac{1}{2}\partial_{\mu}a\partial^{\mu}a + \frac{1}{2}m_{a}^{2}a^{2} + \cdots$

tiny mass $m_a \propto \frac{1}{f_a}$, candidate for DM

Axion Models

Visible Axion (PQWW)

- $10^3 \text{GeV} \le f_a \le 10^6 \text{GeV}$
- Seems to be ruled out by experiments on astrophysical grounds. [Phys. Rev. D 18, 1829 (1978), Phys. Rev. D 22, 839 (1980)]
- Still attempts to make the experimental data compatible with the original model. However, these attempts require a lot of additional assumptions. [JHEP 07 (2018) 092]

Axion Models

Invisible Axion (KSVZ and DFSZ)

- $10^9 \text{GeV} \le f_a \le 10^{12} \text{GeV}$
- QCD Lagrangian including axion below the PQ scale:

$$\mathcal{L}_{\text{QCD},0} - (\bar{q}_L M_a q_R + \text{h.c.}) + \bar{q} \gamma^{\mu} \gamma_5 \frac{\partial_{\mu} a}{2f_a} (X_q - Q_a) q$$

 $M_a = \exp\left(i\frac{a}{f_a}Q_a\right)M$, Q_a is the chiral rotation matrix, M is the quark mass matrix

 X_q is the model-dependent coupling matrix

$$X_q^{\text{KSVZ}} = 0$$
$$X_{u,c,t}^{\text{DFSZ}} = \frac{1}{3}\sin^2\beta, X_{d,s,b}^{\text{DFSZ}} = \frac{1}{3}\cos^2\beta$$

Motivation

Motivation

Motivation

 $f_a^2 \sigma_{an \to \pi^- p} \approx F_\pi^2 \sigma_{\pi N \to \pi N} \approx 1 \text{ mb}(\text{GeV}/f_a)^2$ around the $\Delta(1232)$ region

Chiral Lagrangian Framework

Pion Field

$$U(x) = \exp\left(i\frac{\pi_i(x)\tau_i}{F}\right)$$

Nucleon and Roper Field

$$\Psi_{N^{(*)}}(x) = \begin{pmatrix} p^{(*)}(x) \\ n^{(*)}(x) \end{pmatrix}$$

Delta Field

$$\Delta_{\mu}(x) = \begin{pmatrix} \Delta_{\mu}^{++}(x) \\ \Delta_{\mu}^{+}(x) \\ \Delta_{\mu}^{0}(x) \\ \Delta_{\mu}^{-}(x) \end{pmatrix}$$

Axion Field

$$\chi = s + ip = M_a$$

$$a_{\mu} = c_{u-d} \frac{\partial_{\mu} a}{2f_a} \tau_3$$

$$a_{\mu,i}^{(s)} = c_i \frac{\partial_{\mu} a}{2f_a} \mathbb{I}, i = \{u + d, s, c, b, t\}$$

$$c_{u\pm d} = \frac{1}{2} \left(X_u \pm X_d - \frac{1 \pm z}{1 + z + w} \right), c_s = X_s - \frac{w}{1 + z + w}, c_{c,b,t} = X_{c,b,t}$$

$$z = \frac{m_u}{m_d}, w = \frac{m_u}{m_s}$$
[Phys. Lett. 169B, 73 (1986), J. High Energy Phys. 03 (2020) 138]

Chiral Lagrangian Framework

Pion-Nucleon Interaction

$$\mathcal{L}_{\pi N}^{(1)} = \bar{\Psi}_N \left\{ i \not \!\!\!\! D - \mathring{m}_N + \frac{\mathring{g}_1}{2} \not \!\!\! \mu \gamma_5 + \frac{\mathring{g}_0}{2} \not \!\!\!\! \mu_i \gamma_5 \right\} \Psi_N$$

Delta-Pion-Nucleon Interaction

$$\mathcal{L}_{\Delta\pi N} = rac{g}{2} ar{\Delta}_{\mu} T^{a\dagger} (g^{\mu
u} + \overline{z_0} \gamma^{\mu} \gamma^{
u}) \langle \tau_a u_{
u} \rangle \Psi_N + \mathrm{H.c.}$$

Roper-Pion-Nucleon Interaction

$$\mathcal{L}_{N^*\pi N} = \frac{\sqrt{R}}{2} \bar{\Psi}_{N^*} \left\{ \frac{g_A}{2} \, \mu \gamma_5 + \frac{g_0^i}{2} \, \mu_i \gamma_5 \right\} \Psi_N + \text{H.c.}$$

[Eur. Phys. J. C 82, 869 (2022)]

	Fit 1	Fit 2	Fit 3	Fit 4
$g_{\pi\Delta N}$	2.05	2.04	2.05	2.05
Z	-0.16	-0.08	-0.05	-0.05
\sqrt{R}	0.67	0.79	0.79	0.79
\tilde{T}_+	-0.15	-0.26	-0.09	-0.09
$\bar{c}_d \; [\text{MeV}]$	26.2(25.,50.)	25.0(25.,50.)	$5.9 \cdot 10^{5}$	115.8
$\bar{c}_m \; [\text{MeV}]$	50.0(25.,50.)	43.9(25.,50.)	$1.0.10^{6}$	199.8
$M_S \; [\text{MeV}]$	1560 (840, 1560)	$1560 \ (840, 1560)$	$3.8 \cdot 10^{7}$	63681.
g_S	100.2^{\dagger}	104.3^{\dagger}	$2.4 \cdot 10^{6\dagger}$	$35159.^{\dagger}$
G_V [MeV]	67*	53*	67 *	53*
$g_{ ho}$	5.00(5,8)	5.00(5,8)	6.08	7.70
$\kappa_{ ho}$	5.70(5.7, 6.5)	5.70(5.7, 6.5)	3.53	3.53
a	0.16	0.16	0.16	0.16
χ^2/dof	21.5/355	15.6/355	12.9/355	12.0/355

[Nucl. Phys. A673, 311 (2000)]

Relevant Feynman Diagrams

Contact and Nucleon-Mediated Diagrams

Delta-Mediated Diagrams

Roper-Mediated Diagrams

Pion Rescattering Diagrams

 $= T_{aN \to \pi N}(s) \times g(s) \times T_{\pi N \to \pi N}(s)$, with g(s) usual two-point loop function

p+q

Use Breit-Wigner propagators to avoid pole singularities.

A more refined treatment could be given, e.g. by including the resonance self-energy in the complex mass scheme [Phys. Rev. C 72, 055203 (2005)], but that is not required here.

 $f_a^2 \sigma_{an \to \pi^- p}^{\text{DFSZ}} (\sin^2 \beta = 1/2) = 7 \ \mu b (\text{GeV}/f_a)^2$, $f_a^2 \sigma_{an \to \pi^- p}^{\text{KSVZ}} = 15 \ \mu b (\text{GeV}/f_a)^2$ at $W = m_{N^*}$

One may distinguish the DFSZ model, with $\sin^2\beta$ sizably deviating from 1/2, from the KSVZ model.

At $W = m_{\Delta}$, $\mathcal{O}(10)$ pions would be generated in a megaton water Cherenkov in the KSVZ model using $f_a = 10^9$ GeV, whereas the count would be noticeably higher $(\sin^2 \beta \to 0)$ or lower $(\sin^2 \beta \to 1)$ in the DFSZ model.

Thanks For Your Attention