Prospects for observing neutrino sources with the High-energy Underwater Neutrino Telescope

Tian-Qi Huang (黄天奇)^{1,2}, Zhen Cao (曹臻)^{1,2,3}, <u>Mingiun</u> Chen (陈明君)^{1,2}, <u>Jiali</u> Liu (刘加丽)^{1,2}, <u>Zike</u> Wang (王子珂)¹, <u>Xiaohao</u> You (游晓浩)¹, Qi Ying (齐莹)¹, <u>Peiyuan</u> Chu (褚培元)¹

¹Key Laboratory of Particle Astrophysics and Experimental Physics Division and Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China.

²Tianfu Cosmic Ray Research Center, 610000 Chengdu, Sichuan, China.

³University of Chinese Academy of Sciences, 100049 Beijing, China.

PeVatrons: accelerator of PeV cosmic-rays

1LHAASO: 43 sources (>4σ); 22 sources (>7σ)

High-energy Underwater Neutrino Telescope (HUNT)

HUNT was publicly proposed in ICRC2023.

Two alternative site options

- Lake Baikal
- South China Sea

Detector design

- Angular resolution: ~0.1° (tracks),
 <3°(cascades)
- Energy resolution: $\Delta logE \sim 0.3$ (tracks), $\Delta E \sim 10-30\%$ (cascades)
- Discovering the neutrino sources (>100 TeV)

~6,000 m

Detector simulation

- atmospheric muons and neutrinos
- astrophysical neutrinos

Optical Array + Optical Module

Pesudo-experiment

- Searching for neutrinos from point-like sources using throughgoing tracks
- Searching for neutrinos from extended region using cascade events
- Nhit>=7, Npe>=21
 - r50=0.35 deg @ 100 TeV
 - ➢ r50=0.2 deg enough?
- Nhit>=7, Npe>=7
 - to explore the capability upper limit of this configuration

