中国物理学会高能物理分会 HIGH ENERGY PHYSICS BRANCH OF CPS

TeV物理实验进展综述

感谢梁志均、陈新、李海峰、李数、刘洋、张雷、吴雨生、张华桥、鲁楠、孙小虎、陈明水、李强、易凯、袁丽、陈震宇、肖朦、史欣、杨洪洮、孙勇杰、尤郑昀、赵政国等提供材料

2024-8-16 青岛 第十四届全国粒子物理学术会议

刘衍文 中国科学技术大学

- 引言
 - o TeV 重要的物理问题
 - o ATLAS/CMS概况
 - o 中国组概况
- 主要物理进展: links to <u>ATLAS</u> / <u>CMS</u> Public Results
- 升级关键技术

标准模型没有回答的重要物理问题

- 为何基本粒子如此多? (Who ordered that?)
- 希格斯势能形式?
- 相互作用(EW,Strong,Gravity)是否能统一?
- 时空只有4维?
- 为何反物质如此罕见?
- 中微子质量从何而来?
- 暗能量、暗物质的基本粒子构成什么?

LHC ATLAS/CMS的物理目标

- 希格斯粒子的性质研究(基本粒子的质量起源、希格斯势能形式)
- 精确测量电弱、强相互作用,检验标准模型的自治性,寻找BSM的迹象
 - o W质量和宽度、玻色子散射、多玻色子末态、喷注内部能量关联等
- 寻找特定BSM新粒子、新现象
 - o 新共振峰、FCNC、SUSY、Long-Lived Particles(LLP)

4

LHC时间表

Nominal luminosity = 1×10^{34} cm⁻² s⁻¹

~90%数据来自HL-LHC

ATLAS/CMS概况

中国组单位

单位数

署名作者数*

作者数在

合作组占比

ATLAS	CMS
 中国科学技术大学 高能物理研究所 山东大学 上海交通大学 李政道研究所 南京大学 中山大学 清华大学 郑州大学 	 高能物理研究所 北京大学 北京航空航天大学 清华大学 清华大学 中山大学 浙江大学 南京师范大学 复旦大学 9月科学技术大学 山东大学 华南师范大学
9	11
131	50
4%	2%

ATLAS luminosity

CMS luminosity

Run 2: 目前主要物理成果~140 fb-1 Run 3已经获取积分亮度~130 fb-1

7

希格斯粒子性质研究进展

Run 3中的希格斯粒子

详见8.15 Tahir J.报告

ATLAS:IHEP,NJU,USTC... CMS:BUAA,IHEP,PKU,USTC...

9

希格斯粒子是标准模型中唯一的标量粒子,是探索新物理的重要工具 ●希格斯势能形式不受规范对称性约束,质量受量子修正影响(fine-tuning) ●所有费米子的质量由Yukawa耦合描述 ●或与宇宙演化息息相关: 电弱相变、真空稳定性...

详见8.15 黄燕萍、周辰、张辰光、张阳帆、李涵、李海峰等人报告

希格斯粒子性质

was H^0

In the following *H* refers to the signal that has been discovered in the Higgs searches. Whereas the observed signal is labeled as a spin 0 particle and is called a Higgs Boson, the detailed properties of *H* and its role in the context of electroweak symmetry breaking need to be further clarified. These issues are addressed by the measurements listed below. Concerning mass limits and cross section limits that have been obtained in the searches for neutral and charged Higgs bosons, see the sections ``Searches for Neutral Higgs Bosons" and ``Searches for Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$)'', respectively.

AND SECTOM REPORT ON A SECTOR CONTRACT OF THE SECTOR CONTRACT. SECTOR CONTRACT OF THE SECTOR CONTRACT OF THE SECTOR CONTRACT OF THE SECTOR CONTRACT.	
<i>H</i> MASS	125.20 ± 0.11 GeV (S = 1.4)
H SPIN AND CP PROPERTIES	
H DECAY WIDTH	$3.7^{+1.9}_{-1.4}$ MeV
H SIGNAL STRENGTHS IN DIFFERENT CHANN	NELS
Combined Final States	1.03 ± 0.04
WW* Final State	1.00 ± 0.08
ZZ* Final State	1.02 ± 0.08
$\gamma\gamma$ Final State	1.10 ± 0.06
cc Final State	< 14 CL=95.0%
$b\overline{b}$ Final State	0.99 ± 0.12

on-shell $d\sigma^{pp \to H \to ZZ} \propto \frac{g}{(m_{ZZ}^2 - m_{ZZ}^2)}$	$\frac{g_{Hgg}^2 g_{HZZ}^2}{(m_H^2)^2 + m_H^2 \Gamma_H^2}$ off-shell
$\sigma_{\rm on-shell}^{pp \to H \to ZZ} \propto \frac{g_{Hgg}^2 g_{HZZ}^2}{m_H \Gamma_H}$	$\frac{d\sigma_{\rm off-shell}^{pp \to H \to ZZ}}{dm_{ZZ}} \propto \frac{g_{Hgg}^2 g_{HZZ}^2}{(m_{ZZ}^2 - m_H^2)^2}$

希格斯粒子的质量和宽度

ATLAS: 改进了 $H \rightarrow \gamma \gamma$, 联合4l (Run1, Run2) PRL131 (2023) 251802 $m_H = 125.11 \pm 0.11$ GeV(stat. 0.09, syst. 0.06) CMS: 最精确的单通道(41)测量 $\Gamma_H = 2.9^{+2.3}_{-1.7}$ MeV CMS-PAS-HIG-21-019 $m_H = 125.04 \pm 0.11 \pm 0.05 \text{ GeV}$

ATLAS 由41得到的宽度: $\Gamma_H = 4.5^{+3.0}_{-2.5}$ MeV

PLB846(2023)138223

Corrigendum

新宽度测量:利用tttt测量离壳截面

CMS:BUAA,IHEP,PKU,... ATLAS:IHEP,NJU,SDU,SJTU(TDLI),USTC... 11

希格斯耦合概览

12

Combination:IHEP,PKU,NJU...

希格斯粒子性质新进展

SDU, TDLI, NJU, USTC...

WW γγ

bb WW

Expected: 18

Observed: 14

Expected: 52 Observed: 97

详见8.14 刘彦麟、莫岑、郭佳林 8.15Wu S., Wang Z.,张翼翔 等人报告

希格斯粒子对(HH)的产生

灵敏度逼近标准模型

CMS: BUAA, IHEP, PKU... ATLAS:IHEP,NJU,SDU,SJTU(TDLI),USTC...

ATLAS: κ_{λ} "单参数"分析: CMS: κ_λ"单参数"分析: $\lambda^{\text{SM}} = \frac{m_H^2}{2v^2} \approx 0.13$ 2σ(95.4%) C.I. [-1.2,7.5]([-2.0,7.7]) 95% C.I. [-1.2,7.2]([-1.6,7.2])

"Generic": float $\kappa_t, \kappa_b, \kappa_V, \kappa_\tau$

10^{11} σ [pb] **ATLAS** Preliminary Theory 10⁶ € $\sqrt{s} = 5,7,8,13,13.6$ TeV LHC pp $\sqrt{s} = 13.6$ TeV Data 29.0 - 31.4 fb⁻¹ **♦** LHC pp $\sqrt{s} = 13$ TeV ▲_0_ ▼ ◆ □ ____ ----10⁵ Data 3.2 - 140 fb⁻¹ LHC pp $\sqrt{s} = 8$ TeV Data 20.2 – 20.3 fb⁻¹ Δ 10^{4} LHC pp $\sqrt{s} = 7$ TeV 0 Data $4.5 - 4.6 \, \text{fb}^{-1}$ 10³ **---**LHC pp $\sqrt{s} = 5$ TeV *****-0-Data 0.255 - 0.3 fb⁻¹ Ð $\mathbf{\nabla}$ 10² ю **0 D 0 △** • • • total O -0- 10^{1} ▲ • ■ ... 2 fb⁻ WH 🔺 WWV. 1 10^{-1} *ttH* (×0.3) ▲ WWZ (×0.2) 10^{-2} рр tī Wt ww WΖ ΖZ tŦW tτΖ w Ζ Н t wwv t-chan s-chan tot.

Standard Model Total Production Cross Section Measurements

Status: June 2024

标准模型精确检验进展

16

W粒子质量与宽度的测量(Run 1 数据)

arXiv:2403.15085

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1
			4	4	4		4			4		

EW global fit: PRD 106 (2022) 033003

W质量测量误差分解

利用低瞬时亮度数据测量W/Z横动量

W/Z横动量的精确测量是W质量测量的重要环节

LHC 上的W/Z横动量分布是测量QCD效应的探针(高阶微扰修正、PDF、初态kr等非微扰效应)

PRL132(2024)121901, Editors' suggestion

Nature Research Highlight

统计显著性: 5.6(5.1)σ. 限制u,d,c,s汤川耦合 $\sigma_{WW\gamma} = 5.9 \pm 0.8(\text{stat.}) \pm 0.8(\text{syst.}) \pm 0.7(\text{mod.}) \text{ fb}$

详见8.15 孙小虎报告

<u>CMS</u> $\gamma\gamma \rightarrow \tau\tau$ in pp

arXiv:2405.16566 $WZ \rightarrow WH$ 确定 $\kappa_W^*\kappa_Z^* > 0$

VBS ZZ: Nature Physics 19(2023) 237 SDU,SJTU/TDLI,USTC.. VBS *Ζ*γ: <u>PLB846(2023)138222</u> IHEP,TDLI... VBS *Wy*: <u>arXiv:2403.02809</u> SJTU/TDLI.. Z_LZ_L: JHEP 12 (2023) 107 SDU,SJTU/TDLI,USTC... WZ RAZ: arXiv:2402.16365 USTC. Z+b/c: <u>arXiv:2403.15093</u> USTC. SDU,SJTU/TDLI,USTC... ttW: JHEP05(2024)131 详见8.14 下午吴雨生、陈婧、李家琳及8.15下午杨轩等人报告

-1.8 -1.4 -1.0 -0.6 -0.2 0.2 0.6 1.0 1.4 1.8

-1.8

% CL (5σ) obs

arXiv:2402.13864

测得: $\alpha_s(M_Z) = 0.1229^{+0.0040}_{-0.0050}$

arXiv:2405.20001

 $E3C = \frac{d\sigma}{dx_{L}} = \sum_{i,j,k}^{n} \int d\sigma \frac{E_{i}E_{j}E_{k}}{E^{3}} \delta \left(x_{L} - \max\left(\Delta R_{ij}, \Delta R_{ik}, \Delta R_{jk}\right)\right)$ n

详见8.14 下午林桢报告

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: March 2023

Sta	atus: March 2023									$\int \mathcal{L} dt = (3)$	$3.6 - 139) \text{ fb}^{-1}$	$\sqrt{s} = 13$ Te
	Model	<i>ℓ</i> ,γ	Jets†	E_{T}^{miss}	∫£ dt[fb	p ⁻¹]	Lin	nit		5		Reference
Extra dimen.	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ \end{array}$ multi-channe 1 e, μ 1 e, μ	1 - 4 j - 2 j $\geq 3 j$ - 3 j $\geq 1 b, \geq 1 J/2$ $\geq 2 b, \geq 3 j$	Yes – – – 2j Yes j Yes	139 36.7 139 3.6 139 36.1 36.1 36.1	Mp Ms Mth Gкк mass Gкк mass gкк mass KK mass		1	4.5 Te ⁻ 2.3 TeV 3.8 TeV .8 TeV	11.2 Te 8.6 TeV 9.4 TeV 9.55 TeV V	$ \begin{array}{l} n = 2 \\ n = 3 \text{ HLZ NLO} \\ n = 6 \\ n = 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M}_{Pl} = 0.1 \\ k/\overline{M}_{Pl} = 1.0 \\ \Gamma/m = 15\% \\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{array} $	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
Gauge posons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{SSM} W' \to tb \\ \operatorname{HVT} W' \to WZ \text{ model B} \\ \operatorname{HVT} W' \to WZ \to \ell\nu \ell'\ell' \text{ m} \\ \operatorname{HVT} Z' \to WW \text{ model B} \\ \operatorname{LRSM} W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ - \\ 0 - 2 \ e, \mu \\ 1 \ odel \ C 3 \ e, \mu \\ 1 \ e, \mu \\ 2 \ \mu \end{array}$	- 2 b ≥1 b, ≥2 . - 2 j / 1 J 2 j (VBF) 2 j / 1 J 1 J	– – Yes Yes J – Yes Yes Yes Yes -	139 36.1 36.1 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass Z' mass W _R mass	340 GeV		5.1 T 2.42 TeV 2.1 TeV 4.1 TeV 6 5.0 T 4.4 TeV 4.3 TeV 3.9 TeV 5.0 T	ГеV .0 ТеV 'eV / 'eV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-0 ATLAS-CONF-2021-0 2004.14636 2207.03925 2004.14636 1904.12679
5	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	_ 2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1	- - - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1	.8 TeV 2.0 TeV 2.57 TeV		21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $g_* = 1$ $ G_{4t} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MU	Axial-vector med. (Dirac DM Pseudo-scalar med. (Dirac D Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+) – DM) 0 e, μ, τ, γ c DM) 0 e, μ a multi-channe	2 j 1 – 4 j 2 b el	– Yes Yes	139 139 139 139	m _{med} m _{med} m _Z , m _a	376 GeV	800 GeV	3.8 TeV 3.0 TeV		$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm TeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	ATL-PHYS-PUB-2022-0 2102.10874 2108.13391 ATLAS-CONF-2021-03
ΓC	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ mix gen Vector LQ 3 rd gen	2 e 2 μ 1 τ 0 e, μ \geq 2 e, μ , \geq 1 τ 0 e, μ , \geq 1 τ multi-channe 2 e, μ , τ	$ \begin{array}{c} \geq 2 j \\ \geq 2 j \\ 2 b \\ \geq 2 j, \geq 2 b \\ \tau \geq 1 j, \geq 1 b \\ \tau \geq 1 j, \geq 1 b \\ \geq 1 b \end{array} $	Yes Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139 139 139	LQ mass LQ mass LQ mass LQ mass LQ mass LQ mass LQ mass LQ mass		1 1. 1.49 1.24 TeV 1.23 TeV 1.43 T 1.26 TeV	.8 TeV 7 TeV TeV eV 2.0 TeV 1.96 TeV		$\begin{split} & \beta = 1 \\ & \beta = 1 \\ & \mathcal{B}(LQ_3^u \to b\tau) = 1 \\ & \mathcal{B}(LQ_3^u \to t\nu) = 1 \\ & \mathcal{B}(LQ_3^d \to t\tau) = 1 \\ & \mathcal{B}(LQ_3^d \to b\nu) = 1 \\ & \mathcal{B}(\tilde{U}_1 \to t\mu) = 1, \text{Y-M coupl.} \\ & \mathcal{B}(LQ_3^V \to b\tau) = 1, \text{Y-M coupl.} \end{split}$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-05 2303.01294
fermions	$ \begin{array}{l} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ Y \rightarrow Wb \\ VLQ \ B \rightarrow Hb \\ VLL \ \tau' \rightarrow Z\tau/H\tau \end{array} $	$\begin{array}{c} 2e/2\mu/\geq 3e,\mu\\ \text{multi-channe}\\ X 2(\text{SS})/\geq 3\ e,\mu\\ 1\ e,\mu\\ 1\ e,\mu\\ 0\ e,\mu\\ \text{multi-channe}\end{array}$	$\mu \ge 1 \text{ b}, \ge 1 \text{]}$ el $\mu \ge 1 \text{ b}, \ge 1 \text{]}$ $\ge 1 \text{ b}, \ge 3 \text{]}$ $\ge 1 \text{ b}, \ge 1 \text{]}$ $\ge 2 \text{ b}, \ge 1 \text{ j}, \ge$ el $\ge 1 \text{ j}$	i – Yes Yes I Yes 1J – Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass		1.46 T 1.34 Te 1.64 1 1 898 GeV	TeV V 4 TeV .8 TeV 85 TeV 2.0 TeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$ SU(2) doublet	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-04 1812.07343 ATLAS-CONF-2021-07 2303.05441
ferm.	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton τ^*	- 1 γ - 2 τ	2j 1j 1b,1j ≥2j	_ _ _	139 36.7 139 139	q * mass q * mass b * mass τ* mass			5.3 3.2 TeV 4.6 Te	6.7 TeV TeV V	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 4.6 \text{ TeV}$	1910.08447 1709.10440 1910.08447 2303.09444
Orner	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	2,3,4 e, µ 2 µ 2,3,4 e, µ (SS 2,3,4 e, µ (SS 	≥2 j 2 j S) various S) – –	Yes Yes _	139 36.1 139 139 139 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged particle monopole mass	350 GeV e mass	910 GeV 1.08 TeV 1.59	3.2 TeV TeV 2.37 TeV		$m(W_R) = 4.1$ TeV, $g_L = g_R$ DY production DY production DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-CONF-2022-03 1905.10130
		$\gamma s = 13$ TeV partial data	vs = 1 full d	a iev lata		10 ⁻¹	<u> </u>	1		1(⁾ Mass scale [TeV]	,

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

寻找BSN进展

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

rch 2023					
<u>cn 2023</u>	140 fb ⁻¹ 132 fb ⁻¹ 140 fb ⁻¹ 132 fb ⁻¹ 36 fb ⁻¹ 118 fb ⁻¹ 132 fb ⁻¹				
>0.7 m >7.5 m ie+13 m ie+13 m ie+12 m	132 fb ⁻¹ 137 fb ⁻¹ 132 fb ⁻¹ 13 fb ⁻¹ 13 fb ⁻¹ 13 fb ⁻¹ 39 fb ⁻¹ 39 fb ⁻¹ 39 fb ⁻¹ 140 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹				
	98 fb ⁻¹ 101 fb ⁻¹ 20 fb ⁻¹ (8 TeV) 118 fb ⁻¹ 132 fb ⁻¹ 117 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 16 fb ⁻¹				

23

双光子共振峰

arXiv:2405.18149

CMS:IHEP...

详见8.16上午陶军全报告

 $\sigma_X^{fid} \times B(X \to \gamma \gamma)$ [fb]

arXiv:2407.07546

arXiv:2404.02123

 $\mathscr{B}(t \to Hu) < 2.6(1.8) \times 10^{-4} @95\% \text{CL}$ $\mathscr{B}(t \to Hc) < 3.4(2.3) \times 10^{-4} @95\%$ CL ATLAS: THU...

利用top夸克寻找新物理(FCNC)

arXiv:2404.02123

g2HDM

详见8.16上午尤郑昀报告

arXiv:2403.16926 Submitted to Phys. Rept.

IHEP, PKU, USTC...

寻找 $X \rightarrow YH/HH$ PRL132(2024)231801

IHEP,NJU,SDU...

- 利用强相互作用过程寻找ã, ã, 质量下限分别达到2.2 TeV, 1.7 TeV <u>JHEP02(2024)107</u>
- 利用Wh、WW、WZ、多轻子等末态寻找行,gaugino, <u>JHEP05(2024)150,JHEP12(2023)167,JHEP11(2023)150</u>
- PUB-2024-007, PLB846(2023) 138172

详见8.16上午刘洋、蔡雨辰报告

寻找SUSY

综述、参数空间扫描、不同末态的统计联合分析 arXiv:2402.08347(PRL接收), JHEP05(2024)106, ATL-PHYS-

arXiv:2405.09320

arXiv:2406.01656

希格斯粒子衰变到暗光子

额外维模型中的引力子

详见8.15 Vu N.-K. 王泽炳 8.16李数、Agapitos A.、袁睿等人报告

其他BSM

IHEP,SJTU...

arXiv:2407.09183

ATLAS/CMS phase 2 升级

- 策略: 中国组选择最前沿的技术开展研发, 承担或主导有显示度的整块任务
 - o 大面积、抗辐照、高空间时间分辨的硅探测器
 - o 新型大面积、高计数率、高效率的气体探测器
 - o 高颗粒度、高能量分辨、高时间分辨量能器
 - o 先进的电子学读出和触发系统
- 掌握前沿探测技术及复杂系统批量制作技术,建设平台,培养人才

• ATLAS和CMS的Phase 2升级是实现LHC物理目标的基础:约90%数据来自HL-LHC • HL-LHC 对探测器性能提出更严苛的要求: 每次束流交汇产生约200个质子-质子反应

ATLAS升级概览

TDAQ: 单级触发@1 MHz 接收率(FPGA) 内部径迹探测器(ITk): 全部替换为硅探测器 量能器:前端、后端读出电子学 缪子探测器: 桶部内层新RPC,TGC,sMDT HGTD: 新增飞行时间探测器(30 ps / track)

ATLAS升级-中国

Phase 2: BI RPC (1mm gap) USTC、SJTU、SDU: 气隙、读出板、电子学

Phase 2: 内部径迹探测器 IHEP、THU: 桶部硅微条建造

Phase 1:NSW SDU、USTC: sTGC探测器和前端电子学

Phase 2:HGTD IHEP、USTC、NJU、SDU: LGAD、模块组装、外围电子学、高压系统

ATLAS ITk

- •将内部径迹系统全部用硅探测器替换
- •η覆盖范围从2.5 增大到 4
- •每条径迹至少9个击中
- •硅像素总面积: 13 m² (约50亿通道)
- •硅微条总面积: 165 m² (约6千万通道)
- •抗辐照环境: 内部像素NIEL高达 1×10¹⁶ n_{eq}/cm²

详见8.14 下午蔡孟珂报告

IHEP、THU: 组装10% 硅微条模块(~200个) 利用X-ray及CSNS质子研究芯片抗辐照性能

IHEP Site for ITk Strip Module

IHEP、USTC、SDU、NJU

ATLAS HGTD

共3.6M通道 8000模块 约6 m²

$z = \pm 3.5 \text{ m}$ 0.12 m < r < 0.64 m

LGAD: 全部(IHEP/USTC设计, IME制作)通过PRR IHEP: 66%(采购)+24%(实物贡献) USTC:10%(实物贡献) 探测器模块: IHEP: 50% hybrid, 100% module PCB, 34% assembly USTC: 10% assembly

详见周四(08/15)上午粒子物理实验技术分会

HV, LV, Cooling plate prototype Electronics : PEB 1F + flex tails + 54 modules mounted on 4 support units (detector unit)

USTC、SDU、SJTU

ATLAS RPC

- 触发和读出电子学:每个BX触发逻辑中用到所有数据(包括sMDT)
- 探测器:新增sMDT,RPC和TGC提高覆盖率和触发选择能力
- 科大-上海交大-山东大学: 建造窄气隙RPC
 - •~70 气隙、300单层探测器(全部BIS,占BI 50%)、900读出蜂窝板(50%)、 5000前端电子学板(50%)

★大尺寸(1.7 m×1.1 m) ★高精度气隙厚度:1 mm±10 µm ★读出板厚度精度/平整性:好于100 µm

Resistive plate chambers MDT chambers End-cap Small sector Inner detecto

– Large see

35

USTC、SDU、SJTU

RPC 进展情况

气隙建造:已建立完整工艺,细节待优化

读出板制作:已进入工程阶段 完成约200个合格读出板

建立测试系统和标准 (CERN)

详见杜东硕poster

高精度时间像素探测器

- 按照设计指标, ATLAS ITk像素探测器最内两层在HL-LHC取数至2 ab-1时需要替换 [
- 以此为契机,ATLAS中国组已经开始与国际同行(LBNL,CERN, SLAC等)合 ullet作研制具有~50 ps/pixel分辨率的高精度时间像素探测器,以促成同时覆盖ATLAS 探测器桶部与端盖的四维径迹与顶点重建,减轻HL-LHC上堆积效应的影响
- 中国组目前进展与计划
 - ASIC: 正在开展能够完成高精度时间数据高效缓存和快速读出的数字电路设计, 未来将与国际合作者设计的模拟前端电路整合完成芯片设计
 - 传感器: 正在探索碳化硅LGAD、硅基LGAD、3D传感器等多条国内自主研制的 技术路线,适时确定最终选择
 - 物理: 正在开展完整的四维径迹与顶点重建算法研发与测试, 计划完整验证其物 理及计算潜力

Variable	requirement	result (simulation)	おけ			
		LSB: \sim 25 ps	俟九			
Time resolution	< 50ps	noise: \sim 30 ps	估首			
		total: \sim 40 ps				
Area		$15 imes13\mu$ m analog				
	$< 20 imes 50 \mu$ m	$23 imes 13 \mu$ m digital (counters)				
		$38 imes13\mu$ m total				
Power	$< 5 \mu { m W}$ average	$< 5 \mu$ W during conversi	on			
Range	10 ns	13 ns				
Hit rate	\sim 100 kHz	max conversion time $<$	2 us (5			

37

IHEP、THU、NNU、FDU、ZJU

CMS 高颗粒度量能器(HGCAL)

中国组承担1/5, IHEP站点已通过评估, 率先完成30 (prototype)+7(pre-prod.)模块

Dedicated lab established from scratch for HGCal @ IHEP

PKU、THU、SYSU、BUAA

10

CMS 缪子谱仪—GEM

	GE1/1	GE2/1	ME0
	288 (=2×36×4)	288 (=2×18×8)	216 (=2×18
研	2013-2017	2014-2022	2014-202
生产	2017-2019	2022-2026	2024-202
调试	2018-2020	2026-2027	2025-202
	全部前端电子板GEB的 生产测试,在CERN的 探测器组装测试、安装 调试	负责设计研发及生产测试全部GEB,在北大生 产1/8 GEM探测器,在 CERN进行组装测试、安 装调试	负责设计研发及 试全部GEB,在 产~1/5 GEM探测 CERN进行组装 安装调试

ME0 GEM 测试 @CERN

CMS 时间探测器(MTD: BTL+ETL) BTL: PKU、THU、BUAA 详见08/15 王锦报告(1/ ETL: USTC, SCNU, SDU ETL 详见08/15 鲁楠报告(se BTL prod1 52deg PK (25 μm, type1) + LYSO828 (prod5, type1)

 $|\eta| < 1.45, z \in [-2.6, 2.6] \text{ m}, R = 1.148 \text{ m}, t = 4 \text{ cm}$

端盖(ETL): LGAD, 面积: 14 m², 通道数: 8.5M 抗辐照要求: 1×10¹⁵ n_{eq}/cm²

 $|\eta| \in (1.6,3.0), z = \pm 3.0 \text{ m}, R \in (315,1200) \text{ mm}, t = 4.5 \text{ cm}$

41

• ATLAS、CMS物理进展

- 进入希格斯粒子性质精度测量时代,希格斯对产生灵敏度 接近标准模型
- 电弱、强相互作用精确测量取得丰富的结果,检验SM自治性
- 寻找BSM: leave no stone unturned
- •为HL-LHC开展探测器升级关键技术研究:中国组起到举足 轻重的作用,逐步掌握关键技术、建立平台、培养人才

CLHCP2024 青岛

- 第十届中国LHC物理会议 (CLHCP2024) 将由山 东大学承办,中国高等科学技术中心(CCAST) 与北京大学高能物理研究中心协办
- 会议日期: 2024年11月14日至11月17日
- 会议地点: 山东省青岛市鳌山湾蓝谷国际酒店
- 会议网址: <u>https://indico.ihep.ac.cn/event/22941/</u> 注册截止日期: 2024年10月8日
- 会议内容包括:希格斯物理、电弱物理、强子物 理与味物理、重离子物理、超越标准模型的新物 理、探测器与加速器技术等粒子物理高能量与高 精度前沿重要基础研究热点方向
- 期待理论与实验交叉对话,共促发展

CLHCP2024 青岛

第十届中国LHC物理会议

The 10th China LHC Physics Conference

2024年11月14日-17日 山东省青岛市鳌山湾 https://indico.ihep.ac.cn/event/22941/

会议简介:中国LHC物理会议(简称CLHCP)是由中国物理学会高能物理分会牵头的全国性重要学; 精度前沿粒子物理实验与理论的最新研究进展,会议内容包括:希格斯物理、电弱物理、 越标准模型的新物理、探测器与加速器技术等粒子物理高能量与高精度前沿重要基础研究热点方向。 家及实验物理学家在高能量前沿、高精度前沿与实验技术前沿领域的交流与合作,引领粒子物理领域国内研究水平的共同进 步、推动国内相关研究工作的国际学术影响力、为年轻学者提供交流与合作的舞台。

组织委员会:

PC Chairs: 刘佳 (PKU)、张华桥 (IHEP) 宋慧超(PKU)、刘佳(PKU)、王玉明(NKU)、于江浩(ITP) 徐来林(USTC)、李数 (SJTU/TDLI)、张雷(NJU)、徐达 (IHEP) Upgrade: 王大勇(PKU)、孙勇杰(USTC)、徐庆金(IHEP) LHC Computing: 齐法制(IHEP)

本地组织委员会 李海峰(chair)、李冰、刘彦麟、胡坤、马连良、冯存峰、王健、李海涛

中国高导科学技术中心 Center of Advanced Science and Technolog

BACK UP

轻子味普适性(Lepton Flavor Universality)

 $R(\mu/e) = 0.9995 \pm 0.0045$

HL-LHC luminosity

Flavor tagging improvements (ML)

<u>CMS-DP-2024-066</u>

HL-LHC projections

ATL-PHYS-PUB-2018-054

(a) Scenario S1

ATL-PHYS-PUB-2022-053

(b) Scenario S2

Higgs self-coupling in single Higgs production

