Probing the nuclear structure with relativistic heavy ion collisions

Huichao Song

Peking University

Charles and the second

Exploring nuclear physics across energy scales 2024

04/21/2024

Landscape of nuclear physics

degrees of freedeom

Landscape of nuclear physics

Relativistic Heavy Ion Collisions

Relativistic heavy ion collisions

- create and study QGP
- the QCD phase diagram
- the deconfinement & chiral phase transition
- the QCD vacuum

Hottest Matter on Earth

Most Vortical Fluid

Rich A-A Collisions at RHIC & the LHC PHOBOS BRAHMS ENIX UU PbPb AuAu XeXe_ 60 RuRu / ZrZr CuCu 40 20 00 100 150 50 200 250 А

¹⁹⁷Au+¹⁹⁷Au、²³⁸U+²³⁸U、²⁰⁸Pb+²⁰⁸Pb、¹²⁹Xe+¹²⁹Xe、⁹⁶Zr+⁹⁶Zr、 ⁹⁶Ru+⁹⁶Ru、⁶⁴Cu+⁶⁴Cu、¹⁶O+¹⁶O、p+²⁰⁸Pb、p+p

Probe the deformation of nuclei with relativistic heavy ion collisions

- Relativistic heavy collisions start from nuclei

initial conditions: (with deformations)

initial conditions: (with deformations)

Probe the deformation of nuclei with relativistic heavy ion collisions

- Relativistic heavy collisions start from nuclei

-Collision time < 10⁻²⁴ s directly probe the ground state of nuclei

Collision time < 10⁻²⁴ s

initial conditions: (with deformations)

heavy ion collision at intermediate energies breaks up / excites nuclei during the collisions

Probe the deformation of nuclei with relativistic heavy ion collisions

- Relativistic heavy collisions start from nuclei

-Collision time < 10⁻²⁴ s directly probe the ground state of nuclei

Collision time < 10⁻²⁴ s

Probe the deformation of nuclei with relativistic heavy ion collisions

- Relativistic heavy collisions start from nuclei

Well calibrated calculations

 -Collision time < 10⁻²⁴ s directly probe the ground state of nuclei
 -Well calibrated calculations for QGP evolution; to focus on the initial state

initial conditions: (with deformations)

Initial conditions

viscous hydro

hadron cascade

Study the deformation of ⁹⁶Ru and ⁹⁶Zr at RHIC isobar run

⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr Collisions @ RHIC isobar run

- To search the Chiral Magnetic Effect (CME)

- Obviously different early magnetic field for Ru+Ru and Zr+Zr collisions

Deformation of ⁹⁶Ru and ⁹⁶Zr

Model calculation for Nuclear Deformation

Deformation of ⁹⁶Ru & ⁹⁶Zr — DFT calculations

Deformation of ⁹⁶Ru & ⁹⁶Zr — personal comments

Probe the deformation (mass distributions) of ⁹⁶Ru & ⁹⁶Zr

initial conditions: (deformation / mass distributions)

Hydrodynamic calculation with initially deformed nuclei

Initial conditions (TRENTO)

- Sample nucleon position in deformed nuclei with:

$$\rho(r, \theta, \phi) = \frac{\rho_0}{1 + e^{(r - R(\theta, \phi))/a_0}}$$
Quadrupole:

$$R(\theta, \phi) = R_0 \left(1 + \beta_2 [\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}] \right)$$

$$+ \beta_3 \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m} + \beta_4 \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m} \right)$$
Well calibrated calculations
Initial conditions viscous hydro hadron cascade
$$MCP$$
Hadron
Gas

V₂ and V₃ for Ru+Ru and Zr+Zr collisions

-With fine tuning parameters, iEBE-VISHNU fits V2 & V3 for Ru+Ru collisions

-Using β₂ β₃ in table1, it "predicts" V₂ &
V₃ for Zr+Zr collisions & the related ratio
-- (the data are roughly described).

"standard"	Ru	Zr
a ₀	0.46	0.52
β ₂	0.162	0.060
β ₃	0.00	0.200
		20

ac₂{3}for Ru+Ru and Zr+Zr collisions

ac₂{3} is sensitive to quadrupole and octupole deformations

$$ac_{2}{3} = \langle v_{2}^{2}v_{4}\cos 4(\Phi_{2} - \Phi_{4}) \rangle,$$

21

Probe the deformation of ⁹⁶Ru and ⁹⁶Zr

-- a short summary

-⁹⁶Ru and ⁹⁶Zr: two ideal nuclei for interdisciplinary research between relativistic heavy ion physics and nuclear structure

-isobar collisions provide rich and high statistical run data for various flow analysis, which could constrain the deformation of ⁹⁶Ru and ⁹⁶Zr from heavy ion physics side

-Need more efforts to study the deformation of ⁹⁶Ru & ⁹⁶Zr from both experimental and theoretical sides in nuclear structure

Probe the shape phase transition with Xe +Xe collisions

The Phase Transition

Relativistic heavy ion collisions

-mainly aim to explore QCD Phase Transition

-can also probe the shape phase transition of finite nuclei along certain isotope/ isotone chain

¹²⁹Xe+¹²⁹ Xe collision

-explore the second-order shape phase transition occurring in the vicinity of ¹²⁸⁻¹³⁰Xe

Shape phase transition for Xe isotopes

The shape phase transition:

-rapid structural change along certain isotope or isotone chains -the dynamic interplay between the spherical-driving pairing interaction and the deformation-driving proton-neutron interaction

The shape phase transition for the Xe isotopes:

-Within the the framework of the interacting boson model (IBM), the Xe isotopes undergo a shape phase transition from a γ -soft rotor to a spherical vibrator

R. F. Casten, Nucl. Phys. A 439, 289 (1985). G. Puddu, O. Scholten, and T. Otsuka, Nucl. Phys. A 348, 109 (1980). R. F. Casten and P. Von Brentano, Phys. Lett. B 152, 22 (1985).

-the critical point is described by the E(5) symmetry, associated with a 2nd order phase transition

F. lachello, Phys. Rev. Lett. 87, 052502 (2001).F. lachello, Phys. Rev. Lett. 85, 3580 (2000).

Exp evidence of E(5) symmetry for ¹²⁸Xe

the measured energy spectroscopy of ¹²⁸Xe agrees well with the E(5) predic. (the normalized transition strengths, the branching ratios, the energy ratios between different energy levels

R. M. Clark, et. al. Phys. Rev. C 69, 064322 (2004)

Theoretical predictions on E(5) symmetry near ¹²⁸⁻¹³⁰Xe

10

5

R. Rodriguez-Guzman, et. al. L.M.Robledo, et. al. Phys. Rev. C 76, 064303 (2007) Rev.C 78 (2008) 034314

-Various theoretical calculations indicate a critical point of the second-order shape phase transition (E(5) symmetry) lies in the vicinity of $^{128-130}$ Xe, associated with a γ -soft deformation

Z(4) or E(5) symmetry for ¹²⁸⁻¹³²Xe?

-Z(4) symmetry with a fixed γ at 30° can also describe the spectra and *B*(*E*2) rates for ^{128,130,132}Xe

The mean difference between E(5) and Z(4) is the pair order of energy levels in the γ band.

-It is hard to distinguish such E(5) and Z(4) symmetry in nuclear physics.

D. Bonatsos, D. Lenis, D. Petrellis, P. A. Terziev, and I. Yigitoglu, Phys. Lett. B 621, 102 (2005),

Probing triaxial deformation of ¹²⁹Xe with ¹²⁹Xe+¹²⁹Xe collisions

B. Bally, M. Bender, G. Giacalone, V. Somà, Phys. Rev. Lett. 128 (8) (2022) 082301

Distinguish triaxial and γ-soft deformation of ¹²⁹Xe with ¹²⁹Xe+¹²⁹Xe collisions explore the possible 2nd order phase transition of Xe isotopes

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th]

Hydro initial condi. with triaxial or y-soft deformation

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th

Initial conditions (TRENTO)

- Sample nucleon position in deformed nuclei with:

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi))/a_0}} \\ R(\theta,\phi) = R_0(1 + \beta_2[\cos\gamma Y_{2,0}(\theta,\phi) + \sin\gamma Y_{2,2}(\theta,\phi)]).$$

Rigid triaxial deformation (γ=30°)

Bally et. al. Eur.Phys.J. A 58 (2022) 9, 187,

γ-soft (flat distribution in 0≤γ≤60⁰)

Z. P. Li, et. al. Phys. Rev. C 81, 034316 (2010),

Initial conditions viscous hydro

hadron cascade

mean PT & v2

-With the parameters obtained from previous Bayesian analysis (Pb+Pb coll), our iEBE-VISHNU, with rigid triaxial or γ -soft deformation of ¹²⁹Xe, can describe most of the bulk observables in Xe+Xe collisions

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th], private note 31

3-particle correlation

-Our calculations with rigid triaxial or γ -soft deformation of ¹²⁹Xe can describe the measured ρ_2 and Γ_{pT} equally well.

 $\rho_2, \Gamma_{p_T} \propto \beta_2^3 \cos(3\gamma)$ insensitive to triaxial deformation γ =30° and γ -soft 0≤ γ ≤60°

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th]

6-particle correlations

The γ -soft deformation of ¹²⁹Xe lead to a clear enhancement of 6-particle correlations $\rho_{4,2}$ in ultra-central Xe+Xe collisions

S. Zhao, H. Xu, Y. Zhou, Y. Liu, H. Song, arXiv: 2403.07441 [nucl-th]

33

Exploring the Shape Phase Transision along Xe isotopes

In nuclear structure physics, it is generally believe Xe isotope chain experience a the second-order shape phase transition in the vicinity of ¹²⁸⁻¹³⁰Xe.

Relativistic heavy ion collisions (such as ¹²⁹Xe+¹²⁹Xe) can not only study the QCD phase transition, but also explore such shape phase transition of finite nuclei

Probe the α-cluster of ¹⁶O at RHIC and the LHC

16**0**

¹⁶O+¹⁶O collisions and p+¹⁶O collisions originally aim to study the possible formation of the QGP in small systems

16**0**

-ab initio lattice calculations demonstrate the nucleons are arranged in a tetrahedral alpha clusters in the ground state

E. Epelbaum, et al Phys. Rev. Lett.112, no.10, 102501 (2014)

Recent NLEFT calculations for light nuclei: Intrinsic shape composed of alpha clusters

Shen, Elhatisari, Lahde, Lee, Lu, UGM, Nature Commun. **14** (2023) 2777 Dee Lee talk, today

α -cluster of ¹⁶O from nuclear structure

-ACM calculations show that the low-lying states of 16 O can be described as rotationvibration of a 4 α cluster with tetrahedral symmetry.

R.Bijker and F.Iachello, Phys. Rev. Lett. 112, no.15, 152501 (2014)

(a) Initial state "A",8 equivalent orientations.

Relativistic heavy ion collision to probe the structure of ¹⁶O

initial conditions: (with or without α-cluster)

Measurement from ¹⁶O+¹⁶O collisions

 - v₂{4}/v₂{2}: enhanced fluctuations in ultra-central collisions heavy ion collision data hint alpha-clustering in ¹⁶O

Hydrodynamic calculation w/wo clustering

Initial conditions (TRENTO)

-Woods-Saxon:

Y. Wang, S. Zhao, B. Cao, H. Xu and H. Song.

arXiv: 2401.15723 [nucl-th].

Sensitive observables for α -clustering

Several observables, such as the correlator Γ the $v_n - p_T$ correlations in ¹⁶O+¹⁶O collisions are sensitive to the compactness of the α cluster in the colliding nuclei, which can be used to constrain the detailed configurations of ¹⁶O in the future.

Y. Wang, S. Zhao, B. Cao, H. Xu and H. Song. arXiv: 2401.15723 [nucl-th].

Probe neutron skin at RHIC and the LHC

Neutron skin & neutron star

EOS of nuclear matter

$$\epsilon(
ho,lpha) = [\epsilon_{SNM}(
ho_0) + S(
ho_0)lpha^2)] + lpha^2 {oldsymbol L} { rac{
ho-
ho_0}{3
ho_0}} + {1\over 2} (K_0 + lpha^2 K_{sym}) ({ rac{
ho-
ho_0}{3
ho_0}})^2$$

L: the first order term in EOS; symmetry energy; Large L thick neutron skin

Probe the Neutron Skin at low energy nuclear physics

Parity-Violating Electron Scattering in Jefferson Lab

Relativistic heavy ion collision to probe the neutron skin

Probing the neutron skin of ¹⁹⁷Au and ²⁰⁸Pb

semi-isobaric double ratio

A scaling behavior was found in double ratio of v2{2}/v3{2} when Au and Pb have the neutron skins of the same size, The measured flow harmonics at various centrality suggest Au and Pb have similar neutron skin

Q. Liu, H. Xu and H. Song. Phys.Rev.C 109 (2024) 3, 034912.

Summary

Relativistic heavy ion collisions have already provide rich collision systems to study various aspects in nuclear structure, there are lots of things to explore !

- Nuclear structure: deformation, cluster, neutron skin; shape coexistence, γ-soft (shape phase transition)

-Rich configurations for QGP initial conditions

Backup