Nuclear clustering in ab initio nuclear theory

Bing-Nan Lü **吕炳楠**

Workshop on exploring nuclear physics acoss energy scales $\mathsf{PKU}, \ \mathsf{Beijing}, \ 2024/04/22$

Nuclear physics: Seperation of scales

Chiral effective field theory

Chiral EFT: The low-energy equivalence of the QCD Weinberg (1979,1990,1991), Gasser, Leutwyler (1984,1985)

- Proton (*uud*), neutron (*udd*), pion $(u\overline{d})$
- Spontaneously broken chiral symmetry: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- Goldstone theorem implies a light pion: Long-range part of the nuclear force
- Contact terms: Short-range part of the nuclear force
- Hard scale: $\Lambda_{\chi} \sim 1$ GeV: Chiral EFT works for momentum $Q \ll \Lambda_{\chi}$

Quarks confined in nucleons and pions

Introduction to Lattice Effective Field Theory

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing a ≈ 1 fm = 620 MeV (~chiral symmetry breaking scale)
- Protons & neutrons interacting via short-range, δ-like and long-range, pion-exchange interactions
- Exact method, polynomial scaling ($\sim A^2$)

Euclidean time projection

• Get *interacting g. s.* from imaginary time projection:

 $|\Psi_{g.s.}\rangle \propto \lim_{\tau \to \infty} \exp(-\tau H) |\Psi_A\rangle$

with $|\Psi_A\rangle$ representing A free nucleons.

• Expectation value of any operator \mathscr{O} :

$$\langle O
angle = \lim_{ au o \infty} rac{\langle \Psi_A | \exp(- au H/2) \mathscr{O} \exp(- au H/2) | \Psi_A
angle}{\langle \Psi_A | \exp(- au H) | \Psi_A
angle}$$

τ is discretized into time slices:

$$\exp(-\tau H) \simeq \left[:\exp(-\frac{\tau}{L_t}H):\right]^{L_t}$$

All possible configurations in $\tau \in [\tau_i, -\tau_f]$ are sampled. Complex structures like nucleon clustering emerges naturally.

Zeroth order Hamiltonian (perturbative order)

We use a zeroth order lattice Hamiltonian that respects the Wigner-SU(4) symmetry

$$H_0 = K + \frac{1}{2}C_{\mathrm{SU4}}\sum_{\boldsymbol{n}}: \tilde{\rho}^2(\boldsymbol{n}):$$

The smeared density operator $\tilde{\rho}(\mathbf{n})$ is defined as

$$\tilde{\rho}(\boldsymbol{n}) = \sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}) \tilde{a}_{i}(\boldsymbol{n}) + s_{L} \sum_{|\boldsymbol{n}'-\boldsymbol{n}|=1} \sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}') \tilde{a}_{i}(\boldsymbol{n}'),$$
(1)

where *i* is the joint spin-isospin index

$$\tilde{a}_i(\boldsymbol{n}) = a_i(\boldsymbol{n}) + s_{NL} \sum_{|\boldsymbol{n}'-\boldsymbol{n}|=1} a_i(\boldsymbol{n}').$$
(2)

In this work we use a lattice spacing a = 1.32 fm and the parameter set

Essential elements for nuclear binding

Charge density and neutron matter equation of state are impotant in element creation, neutron star merger, etc.

Lu et al., PLB 760 (2016), 309

MC sign problem for realistic interactions

- Sign problem: Monte Carlo works well for well-behaved functions, however, sometimes the integral becomes highly oscillating.
- QMC sign problem comes from the fermion anti-symmetrization.
- Split H = H₀ + λV_C. H₀: w/o sign problem; V_C: w/ sign problem.
- Solution 1: numerical extrapolation from λ = 0 to λ = 1.
- Solution 2: perturbative calculation near λ = 0.

Perturbative quantum Monte Carlo Method

- We split H = H₀ + (H − H₀) and perform perturbative calculations
- E_0 is the ground state of H_0
- $E_1 = E_0 + \delta E_1$ is the first order corrected energy
- E₂ = E₁ + δE₂ is the second order corrected energy
- *E*_{non-pt} is the exact solution (~infinite order)
- Red bars on the right: Experiments Lu et al., PRL 128, 242501 (2022)

For ⁴He and ¹⁶O, sign problem prevent us from going to large τ , resulting in large statistical errors.

Perturbative QMC theory reduce the statistical errors at a cost of perurbative truncation errors!

Perturbative quantum Monte Carlo method

Table: The nuclear binding energies at different orders calculated with the ptQMC. E_{exp} is the experimental value. All energies are in MeV. We only show statistical errors from the MC simulations.

	E_0	δE_1	E_1	δE_2	E ₂	E_{exp}
³ Н	-7.41(3)	+2.08	-5.33(3)	-2.99	-8.32(3)	-8.48
⁴ He	-23.1(0)	-0.2	-23.3(0)	-5.8	-29.1(1)	-28.3
⁸ Be	-44.9(4)	-1.7	-46.6(4)	-11.1	-57.7(4)	-56.5
¹² C	-68.3(4)	-1.8	-70.1(4)	-18.8	-88.9(3)	-92.2
¹⁶ O	-94.1(2)	-5.6	-99.7(2)	-29.7	-129.4(2)	-127.6
$^{16}\text{O}^\dagger$	-127.6(4)	+24.2	-103.4(4)	-24.3	-127.7(2)	-127.6
¹⁶ O [‡]	-161.5(1)	+56.8	-104.7(2)	-22.3	-127.0(2)	-127.6

Realistic N^2LO chiral Hamiltonian fixed by few-body data + perturbative quantum MC simulation = nice agreement with the experiments

Excellent agreement \implies Demonstration of nuclear force & many-body algorithm

Also applicable for densities & matrix elements Lu *et al.*, PRL 128, 242501 (2022)

Exploring densities with pinhole algorithm

In terms of auxiliary fields, the amplitude Z can be written as a path-integral,

$$Z_{f,i}(i_1,j_1,\cdots,i_A,j_a;\boldsymbol{n}_1,\cdots,\boldsymbol{n}_A;\boldsymbol{L}_t) = \int \mathscr{D}s \mathscr{D}\pi \langle \Psi_f(s,\pi) | \rho_{i_1,j_1,\cdots,i_A,j_A}(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_A) | \Psi_i(s,\pi) \rangle.$$

We generate a combined probability distribution

 $P(s,\pi,i_1,j_1,\cdots,i_A,j_a;\boldsymbol{n}_1,\cdots,\boldsymbol{n}_A) = |\langle \Psi_f(s,\pi)|\rho_{i_1,j_1,\cdots,i_A,j_A}(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_A)|\Psi_i(s,\pi)\rangle|$

by updating both the auxiliary fields and the pinhole quantum numbers.

Pinhole algorithm: Intrinsic density distributions

Densities relative to the center of mass:

$$\rho_{\mathrm{c.m.}}(r) = \sum_{\boldsymbol{n}_{1},\cdots,\boldsymbol{n}_{A}} |\Phi(\boldsymbol{n}_{1},\cdots,\boldsymbol{n}_{A})|^{2} \sum_{i=1}^{A} \delta(r - |\boldsymbol{r}_{i} - \boldsymbol{R}_{\mathrm{c.m.}}|)$$

- First LEFT calculation of nuclear intrinsic densities.
- **Proton radius** is included by **numerical convolution** $\rho(\mathbf{r}) = \int \rho_{\text{Point}}(\mathbf{r}') e^{-(\mathbf{r}-\mathbf{r}')/(2a^2)} d^3r'$, proton radius $a \approx 0.84$ fm.

• Independent of projection time $L_t \iff$ In ground state

● Sign problem suppressed → Small errorbars Elhatisari et al., PRL 119, 222505 (2017)

Many-body correlations: α -cluster geometry in C isotopes

We always align the longest edge with the x-axis and keep the triangle in the x-y plane.

$$\begin{split} \rho(d_1, d_2, d_3) &= \sum_{j_1, j_2, j_3} \sum_{\boldsymbol{n}_1, \boldsymbol{n}_2, \boldsymbol{n}_3} |\Phi_{\uparrow, j_1, \uparrow, j_2, \uparrow, j_3}(\boldsymbol{n}_1, \boldsymbol{n}_2, \boldsymbol{n}_3)|^2 \\ &\times \sum_{P(123)} \delta(|\boldsymbol{n}_1 - \boldsymbol{n}_2| - d_3) \delta(|\boldsymbol{n}_1 - \boldsymbol{n}_3| - d_2) \delta(|\boldsymbol{n}_2 - \boldsymbol{n}_3| - d_1), \end{split}$$

Hoyle state: Triple-α resonance, essential for creating ¹²C in stars (Hoyle, 1954). *Fine-tuning for life?*

Epelbaum et al., PRL 106, 192501 (2011) Elhatisari et al., PRL 119, 222505 (2017)

Clustering from first principle: Tomographic scan of ¹²C

- Structure of ¹²C states are full of complexity and duality (clustering v.s. mean-field)
- we provide the first model-independent tomographic scan of the three-dimensional geometry of the nuclear states of 12C using the ab initio framework of nuclear lattice EFT.

• 0_1^+ : ground state, 0_2^+ : Hoyle state Shihang Shen et al., Nat. Comm. 14, 2777 (2023) Also see Dean & Ulf's talks

Hot nucleus with pinhole trace algorithm

Water molecule versus nucleons

Upper: Van-der-Waals force between water molecules

- Strength ${\sim}0.1$ eV, range ${\sim}1$ Å
- Phase transition at $T \sim 300 \text{ K}$ ~ 0.03 eV

Lower: Nucleon-nucleon potential from Lattice QCD

- $\bullet~$ Strength ${\sim}10$ MeV, range ${\sim}1$ fm
- What is the characteristic temperature?

Boltzmann constant

Clustering in hot nucleus from experiments

Interplay between quantum mechanics & thermodynamics produces abundant microscopic structures **"Cold clusters in a hot vapor" Upper:** Binding energies of clusters versus density, derived from experiments K Hagel et al., PRL 108, 062702 (2012)

- Mott points: Temperature/Density where the cluster dissociate
- Consequence of many-body correlations

Lower: Two humped structure in largest fragment mass distribution signifies a phase coexistence E Bonnet et al., PRL 103, 072701 (2009)

- Liquid-Vapor coexsitence: a single large cluster + many small clusters
- Vapor phase: many small clusters

Fisher's droplet model

• Fisher assume an ideal gas of clusters

with size $A=1, 2, ..., \infty$ (Classical model) ME Fisher, Rep. Prog. Phys. 30, 615 (1967)

• Ansatz for clusters' energy & entropy,

$$E(A) = -a_v A + c_0 A^{\sigma}$$

$$S(A) = b_v A + b_s A^{\sigma} - \tau \ln A + \ln q_0$$

- Volume/Surface terms & phenomenological terms to account for critical scaling
- Concentration of mass-A cluster in thermal equilibrium:

$$n(A) = e^{-F(A)/T} = e^{-(E(A)-TS(A))/T}$$

F(A): Free energy

 Parameters fitted to cluster yields in multi-fragmentation experiments, *T_c*, *ρ_c*,... determined from the model parameters

Nuclear thermodynamic models

Progress in Particle and Nuclear Physics 105 (2019) 139-179

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review Dynamics of clusters and fragments in heavy-ion collisions Akira Ono Department of Physics, Tohoku University, Sendai 980-8578, Japan

"Traditionally there are **two types** of transport models. One is the **mean-field models** which are based on the distributions of nucleons moving independently in the mean field. The other is the **molecular dynamics models** which is similar to the A-body classical dynamics but nucleons are represented by Gaussian wave packets."

"Naive statements about the defects of these models are that the mean-field models lack many-body correlations and that the molecular dynamics models are classical'

"It is **not possible** to exactly solve such quantum many-body problem **from the first principle** with computational facilities available currently or in near future"

Simulate canonical ensemble with pinhole trace algorithm

All we need: partition function Z(T, V, A) = Σ_k ⟨exp(−βH)⟩_k, sum over all othonormal states in Hilbert space ℋ(V, A).

- The basis states $|n_1, n_2, \dots, n_A\rangle$ span the whole *A*-body Hilbert space. $n_i = (r_i, s_i \sigma_i)$ consists of coordinate, spin, isospin of *i*-th nucleon.
- Cannonical partition function can be expressed in this complete basis:

$$Z_A = \operatorname{Tr}_A\left[\exp(-\beta H)\right] = \sum_{\boldsymbol{n}_1, \cdots, \boldsymbol{n}_A} \int \mathscr{D}s \mathscr{D}\pi \langle \boldsymbol{n}_1, \cdots, \boldsymbol{n}_A | \exp\left[-\beta H(s, \pi)\right] | \boldsymbol{n}_1, \cdots, \boldsymbol{n}_A \rangle$$

- Pinhole algorithm + periodicity in β = Pinhole trace
- Apply twisted boundary condition in 3 spatial dimensions to remove finite volume effects. Twist angle θ averaged with MC.

Nuclear matter with twisted boundaries

PBC: Periodic Boundary Conditions: $\Psi(x+L) = \Psi(x)$ ATBC: Average Twisted Boundary Conditions: $\Psi(x+L) = e^{i\theta}\Psi(x)$

Averaging over θ s' to remove fictitious shell effects

Lu et al., PRL 125, 192502 (2020)

interaction from LU, et. al., Phys. Lett. B 797, 134863 (2019) "Essential elements for nuclear binding"

Extract intensive variables with Widom insertion method

Extensive variables: Measured by operator insertion,

- E.g., energy $E = \langle H \rangle_{\Omega}$, density correlation $G_{12} = \langle \rho(\mathbf{r}_1) \rho(\mathbf{r}_2) \rangle_{\Omega}$.
- Intensive variables: Measured by numerical derivatives,
 - E.g., pressure $p = -\frac{\partial F}{\partial V}$, chemical potential $\mu = -\frac{\partial F}{\partial A}$.
- Widom insertion method: Measure μ by inserting test particles (holes)
 B. Widom, J. Chem. Phys. 39, 2808 (1963)

$$\mu = \frac{1}{2} \left[F(A+1) - F(A-1) \right] = \frac{T}{2} \ln \frac{Z_{A-1}}{Z_{A+1}} = \frac{T}{2} \ln \left[\frac{\sum_{1,2} \operatorname{Tr}_{A} \left(\hat{a}_{2}^{\dagger} \hat{a}_{1}^{\dagger} e^{-\beta H} \hat{a}_{1} \hat{a}_{2} \right) / (A-1)!}{\sum_{1,2} \operatorname{Tr}_{A} \left(\hat{a}_{1} \hat{a}_{2} e^{-\beta H} \hat{a}_{2}^{\dagger} \hat{a}_{1}^{\dagger} \right) / (A+1)!} \right]$$

1, 2: L³×2×2 lattice sites, spins and isospins, sampled with Monte Carlo
 (A±1)!: Combinatorial factors for identical Fermions

Finite nuclear systems: Liquid-vapor coexistence line

- First ab initio calculation of nuclear liquid-gas phase transition.
- Symmetric nuclear matter N = Z, lattice spacing a = 1.32 fm, volume $V = (6a)^3$, nucleon number $4 \le A \le 132$.
- Temperature 10 MeV \leq T \leq 20 MeV, temporal step $\Delta\beta$ = 1/2000 MeV $^{-1}$.
- 288000 independent measurements for every data point. Lu et al., PRL 125, 192502 (2020)

Critical point: Compare with experiment

- Pressure $p = \int \rho d\mu$ along every isotherm (Gibbs-Duhem equation).
- Extract *T_c*, *P_c* and *ρ_c* of neutral symmetric nuclear matter by numerical interpolation.
- Uncertainties estimated by adding noise and repeat the calculation.
- Experimental values and mean

field results taken from Elliott et al., Phys. Rev. C 87, 054622 (2013)

	This work	Exp.	RMF(NLSH)	RMF(NL3)				
$T_c(MeV)$	15.80(3)	17.9(4)	15.96	14.64				
$P_c({\rm MeV}/{ m fm^3})$	0.260(3)	0.31(7)	0.26	0.2020				
$ ho_{c}({ m fm}^{-3})$	0.089(1)	0.06(1)	0.0526	0.0463				
$ ho_0~({ m fm}^{-3})$	0.205(0)	0.132						
$ ho_c/ ho_0$	0.43	0.45						
Lu et al PRI 125 192502 (2020)								

Other observables: Clustering in hot nuclear matter

- Mean field models can yield **bulk properties**. However, microscopic observables like **clustering** play important role in experiments.
- Fisher's droplet model see hot nucleus as a mixture of small droplets, *F* = volume term + surface terms, not microscopic.
- *Ab initio* calculation unifies all calculations in a single framework with microscopic foundations.
- Test: Ratio $\langle : \rho^4 : \rangle / \langle \rho \rangle^4$ signifies the clustering correlation.

Count clusters in hot nuclear matter

 By expanding the correlation functions on a basis of cluster correlation functions, the probability / mass fraction of clusters can be extracted

"Ab initio study of nuclear clustering in hot dilute nuclear matter" ZhengXue Ren et al., PLB 850, 138463 (2024)

Structure factors with realistic chiral interactions

• Structure factors are Fourier transforms of correlation functions

$$S_{V}(\boldsymbol{q}) = \int d^{3}r[\langle \hat{\rho}(\boldsymbol{r} + \boldsymbol{r}')\hat{\rho}(\boldsymbol{r}')\rangle - \rho_{0}^{2}]e^{-i\boldsymbol{q}\cdot\boldsymbol{r}}$$
$$S_{a}(\boldsymbol{q}) = \int d^{3}r[\hat{\rho}_{z}(\boldsymbol{r} + \boldsymbol{r}')\hat{\rho}_{z}(\boldsymbol{r}')\rangle - \rho_{z0}^{2}]e^{-i\boldsymbol{q}\cdot\boldsymbol{r}}$$

- Key for modeling Core-collapse supernovae explosions via neutrino-nucleon scattering
- Ab initio calculation with a N³LO chiral interaction based on a rank-one operator method YuanZhuo Ma et al., arXiv:2306.04500

Performance of Pinhole Trace Algorithm

• Direct diagonalization scales exponentially $\sim \mathcal{O}(e^{\lambda L^3})$.

- Conventional grand-canonical ensemble MC method scales as \$\mathcal{O}(L^9)\$.
- Left: Recently finite-*T* auxiliary field MC accelerated by removing unoccupied states. Complexity~ 𝒫(L³N²_{occ}), N_{occ} ~ A at low *T*. Gilbreth, Jensen, Alhassid, arXiv:1907.10596 (2019)

• **Right:** Pinhole trace algorithm complexity $\sim O(L^3 A^2)$ for any *T*. Lu et al., PRL 125, 192502 (2020)

New methods can be thousands of times faster for $A \ll L$

- Lattice simulations are able to incoorporate all essential many-body correlations, reproducing the nuclear clustering based on a fully microscopic universal Hamiltonian
 - Ground state
 - Excited state
 - Finite temperature
 - Reaction
 - Hyper nucleus
 - ...
- Interactions with Wigner SU(4) symmetry works well with MC
- Precision interactions (e.g, chiral EFT) are more challenging (sign problem...), new algorithms required
 - Perturbative Quantum MC method
 - Rank-One operator method
 - ...

THANK YOU FOR YOUR ATTENTION