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A widely used tool in nuclear physics across energy scales
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The General Principle is simple: the Bayes' Theorem.

Likelihood Prior

(yexp|M Xtrue) PO(xtrue)
f L dX—) Evidence

Posterior

—N—
'D(Xtruc ‘Ma Yexp)

How certain we are on a statement given the data and the
theory/model? Make predictions and identify anomalies.



Sources of uncertainties

e The exact likelihood function is often unknown. Often molded by multivariate Gaussian:
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e Covariance X encodes experimental. theory/model uncertainty
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The prior and the uncertainty

Thank Dr. Yi Yin for reminding me of an interesting connection. He asked me “Is the
following statement some form of Bayes' theorem? and 04/22 is Kant's 300’s birthday”.

“Kant maintained, knowledge must rest on judgments that are
a priori, for it is only as they are separate from the contingen-
cies of experience that they could be necessary and yet also syn-
I eI 1 1ctic—i.e., sO that the predicate term contains something more

experience tl:lere canbe no d'oubt. & ; ; ; ; ) ”
Immanuel Kant Criiqus of e Reason” (1751) than is analytically contained in the subject.

—Period of the three Critiques of Immanuel Kant, Encyclopaedia Britannica

[http://www.gutenberg.org]

While in Bayes' theorem, the prior can be either analytic (e.g., causality bounds on the
transport parameters) or empirical (old data) and even biased. So the choice of prior also
affects uncertainty quantification.



Review HIC modeling and uncertainties
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Review HIC modeling and
uncertainties



The spirit of a multi-stage modeling

Modified 1"1'()11; figs by J. E. Bernhard. ‘ o
‘ > Time

7 = 0": almost instantaneous energy deposition from the two nuclei pancake.

e 7 < 7g: longitudinal expansion driven, pre-equilibrium stage.

7 ~ L) hydrodynamic pressure driven stage.

TRV 1 ~ 1, T < T.: hadronic transport stage.



From the Glauber model to the initial energy deposition model
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e Glauber model determines the probability for AB to collide
at given impact parameter.

e Map participant nucleon density T4 g to TH(x,7s) at
7 = 0%. With boost invariance:

dE
m(&,ns = 0) = Norm x f(Ta(x0), Ta(x1))
e Direct related to nuclear structure, but often heavily relies
on modeling. TRENTo is one of the many ansatz:

O + Tg)l/”

f(Ta, Tg) = < 5



A motivation for the TRENTo ansatz
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B Wounded nucleon model

ds = -
dyd—QMCXTA_FTB

® EKRT model PRC 93, 024907 (2016)
after brief free streaming phase
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Some new worries of initial-condition mo
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e In the derivation of Glauber formula (op4), one assumes that
pa(re, - ) =TI pr(ri). Then, Pep(b) can be expressed as functional of
nuclear thickness function.

e But the assumption may not work well for a wave function like

-,

) = S5 B\ By-



Pre-equlibirum stage

=il
Fast longitudinal expansion dominate over collisions &; < 1

=

Mo~ 10 T (Thyiror X)

e Zeroth order theory: use collisionless Boltzmann equation to
evolve T77(x7,7 = 0%) to TH¥(XT, Thydro) [PRC91(2015)064906].

e QCD Effective Kinetic Theory. Brings the system closer to local
equilibrium. [Kurkela et al, PRL122(2019)122302]

e Anisotropic hydro: gradient expansion around an anisotropic
] 2<(hyare i) distribution function, extend hydro theory towards early time.

o 9R ~ 10 fm [Florkowski Ryblewski, Martinez, Strickland, McNelis, Bazow, Heinz et al.]

Main uncertainty: how the system approach to hydrodynamization, and the matching

time scale Tyydro-



Applications and developments of the relativistic hydrodynamics

The hydrodynamic stage

T =eutu” + (u"u” — g")(P(e) + M) + 7H*
o T2

N+20V-u

m

ﬁ =
Sensitivity of flow development to viscosity.
Main uncertainty: validity of the gradient expansion,

higher-order transport coefficients.
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Particlization of fluid element

An ill-defined inverse problem: how to reconstruct the distribution function
foq(p, x) + 0fi(p, x) for each specie of hadrons from T/¥(x) and conversed currents.

Different models result in different momentum dependence and hadron chemistry.

e Grad 14-moment expansion 6f(p) ox Az p(,pyy + M(Arm? + Ag(p - u)?)

e Using 1%%-order Chapman-Enskog solution to RTA Boltzmann equation.

5o Twptp T <f(p- u Awp“p”>
26-(p-u)T ~ PBn T2 3(p-u)T

e Rotate, stretch, and rescale the equilibrium distribution (Pratt-Torrieri-Bernhard /McNelis)

foq + 8F = Zfeg (p" [+ 2-)05 + 71y, T - r+5n1ﬂf)

36n
How to match a hadron resonance gas EoS (missing states? resonance width?
(500)?) to lattice QCD EoS near T..
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Hadronic afterburner

The particlized system is then solved by a hadronic transport equation

0
5pfi v Vi = Vi Vpfi= > Clfi 6]

e The potential term is often turned-off in the afterburner for ultra-relativistic collisions.

e Parametrization of some hadronic cross-sections.

Despite all these uncertainties, Bayesian analysis allows us to learn something with
certainty.
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Essential for making quantitative progress

N

po * Kinetic theory n ¢ -2
- ] * lattice QCD —(T), 2(T)
3 5 -+ AdS/CFT limit S S -
2 E = viscous hydro

9} viscous hydro + flow dat)z,-x TTI’ T(’ it
n 8 s
= 3 )

ideal hydro =

2000s: order of magnitude from pQCD.

2004: strongly coupled theory n/s = 1/(4m) +---.

2006-2013: eyeball fit with viscous hydro (17/s)eg = 0.1-0.2

e 2013-: Bayesian analysis of EoS and 7/s with uncertainty.

2016—: Temperature-dependent shear and bulk viscosity 7/s(T),(/s(T).
2021-: Bayesian model averaging, model improvement, novel observables.
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Bayesian analysis of bulk matter
properties



For simple models
P t
f'arame. er space (x)
(with prior knowledge)
[ Model j

Y

[ Prediction y(x) j

Bayes theorem
Posterior o< Likilihood x Prior

A,

Posterior
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For computationally intensive model
Parameter space (x
Emulator: fast prediction ) ) pace (x)
(with prior knowledge)

of y given “arbitrary” x, *

trained on {x;,y(xi)} A finite set of model
prediction {x;, y(x;)} }
Prediction j

N

Bayes theorem
Posterior o< Likilihood x Prior

Posterior

)
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A

class of non-parametric emulators: Gaussian emulators
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Gaussian emulators: to interpolate the value of y at a new
input x, it makes use of how y(x) correlates with all the
training data y(xr ;) =yr,i, i=1,2,---m
e The distribution of y(x) is also a normal distribution
P(y(x)) = N(u,0%)
u(x) = K(x, 2r)K (%7, X1)y7,
(x) = K(xx) = Klx 71K (7r, 7r)K (7, X))

e Interpolation uncertainty

T = 05l(0yaean)? + (0¥5ym0)?] + (Oyd)i(Oyeyd)sci
+ z(‘:.mulator + ztﬂhemy
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The workflow for analyzing a computationally intensive model
P t
Emulator: fast prediction f'arame. er space (x)
(with prior knowledge)

of y given “arbitrary” x,

trained on {x;, y(xi)} { }
[ Prediction j
Bayes theorem
Posterior o< Likilihood x Prior

Posterior
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For an array of observables

Emulate f(pT.1)

Parameter space (x)
xperiments
(with prior knowledge) &

Emulate f(p7.n_1) { }
Emulate f(prn)

Emulate f(pT.5)

L3 et Prediction ]
0 L5
.
5 b g \
g 1.0 .0 e "
3 P e, Bayes theorem
=3 L) o * . o )
Sos| meEdl E o Posterior o Likilihood x Prior
.'."*; p/$ x 0.1 b
o
0 T T T T .
0 1 2 3 4 Posterior
pr (GeV/c)
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Dimensional reduction via the Principal-Component Analysis (PCA)

Vector observables at m input points. Quantify obs variations w.r.t. parameters

L mom
yT(X ) (}/1 Yo YN )a [COV]U — ,]-,-7 Z (y,[S] )—/) (yJ[S] _ Z) 5
5o =0

( [m]7.y2[m]a ' y/[\[m]) )_/J: Z [s]

PCA: orthogonal transformation of the basis to an empirical ba5|s

yT()?T,m)

M 0 0 M 0 O
(OT)l_k [Covl, (0);= |0 X 0| 2>l gy @
or 07 ... 07 07 0

e In the new basis, the new observables (features) are Z; = [OT]I.J.yj.
e Z;,Z;'s change with x are linearly independent (there may be non-linear correlations).

Dimensional reduction: Z; ~ [Z;(x), Z»(x),0, - -]
19



The workflow of the emulator4+PCA-assisted Bayesian analysis
. . Experiments
{ Emulate Z;(x), (with prior knowledge)

trained on (O7y,)

{ Emulate Z>(x), { }

trained on (O7y;)

[ Prediction ]

Inverse PCA transforma-
tion: y_0[Z1, 25,0, ---]

Bayes theorem
Posterior o< Likilihood x Prior

The emulator + PCA truncation uncertainty:

oi(x) 0 0
Zfisjmulator(x) = Oik 0 0’%()() 0 (OT)Kj @

0 0 Ngooo

ke 20



Diagnosis tools and validation test

e Modern analysis framework often provides diagnosis tools to access the performance of each

module (emulators, PCA, etc).

e A final validation test for the final analysis V [JETSCAPE PRC103(2021)054904].
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Calibrate the multi-stage model

. ) Pb-Ph 2.76 TeV Pb-Pb 5.02 TeV
Energy deposition model
+ Preequiblirum dynamics , \
. w0
« e . . — 7 B F
+ Relativistic viscous hydrodynamics . = \ £
+ Freeze-out to hadron resonance gas - -
—+ Had ronic tra nsport mode| 0 2 M @ %' 2 0 @ 50
| : 15
Parameter Description Range —— 0 ’ =
. o 8-20 (2.76 TeV) - — - -
Norm Normalization factor 10-25 (5.02 TeV) ————e 05
P Entropy deposition parameter —1/2 to +1/2 o 00
Oftuct Multiplicity fluct. std. dev. 0-2 00! » o “ Loo ] » v “
w Gaussian nucleon width 0.4-1.0 fm 4
a3 Minimum nucleon volume 0-1.7 fm? o - . oo
Ths Free streaming time 0-1.5 fm/c 002 oz Y 002
n/s hrg Const. shear viscosity, T' < T,  0.1-0.5 on | E = on | =S
7/s min Shear viscosity at T, 0-0.2
n/s slope  Slope above T, 0-8 GeV~! s E) 0 W %% 2 0 ) S0
n/s crv Curvature above T, —1to +1 .
(/s max Maximum bulk viscosity 0-0.1 o g o = = 2
(/s width ~ Peak width 0-0.1 GeV = 4 :
(/s Ty Peak location 150-200 MeV Fon 005 £
Tewitch Particlization temperature 135-165 MeV B
om0 0o
0 E) o ) S0 0 20 10 o S0
Centrality % Centrality %

[Jonah E. Bernhard Ph.D. dissertation] 2



Calibrate the multi-stage model

Pb-Pb 2.76 TeV Pb-Pb 5.02 TeV.
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Marginalized posterior distribution of shear and bulk viscosity

[JE Bernhard, JS Moreland, SA Bass, Nat. Phys.

15(2019)1113-1117.]

(n/8)eurv
nfs = (0/S)min + (0/)stope(T = To) (TT>
(¢/5)max

¢/s 1+ (T = (¢/9)1)%/(¢/9)2 g

With a high degree of confidence:
e Quark-gluon plasma (QGP) is strongly coupled

n/s=(1---2)/(4r).

e QGP has a nonzero bulk viscosity.
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Model uncertainty and Bayesian model averaging

'D(X|yexp7 M/)
—_———

Posterior for model “/”

[JETSCAPE Collaboration, Phys.Rev.Lett. 126 (2021) 24, 242301]

Use Bayesian model averaging (BMA) to take into account the uncertainty in the fluid-cell
particlization procedure:

PemA (X|Yexp, {Mi}) = Z

X P(Yexp|Mi)
————

Evidnece of model ‘/”

After model averaging (orange
bands), the BMA posterior is
dominated by the one with the
highest evidence.



Information gain and the prior



Quantify the information gain

To quantify the difference between posterior and prior

e Use the “Kullback—Leibler divergence” (KL divergence, Dk1,) to measure the “distance”
between two distributions P; and P,

Pl(X)

DKL(PlHPQ)E/prl(X)m m,

we take P; =Posterior, P, =Prior.

e If Dy, = 0, then the posterior is the same as our prior belief, nothing new...

e Dgkp, > 0 signatures information gain from experimental data.

25



Quantify the information gain

0.4 4 90% Cl Prior
il 90% Cl Po:tenor
Little sensitivity to viscosity at high T 0101 G
N <

(DKL(T > 0.25G6V) =~ 0). Most 0.05 1 i
information gains in low-temperature S 0.0

. . aiH 1 \ S = PriorAPosterigr
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e Some observable only sensitive to “averaged 7/s" [J-F Paquet, SA Bass, PRC102(2020)014903]

‘Tmax «
g = TS AT
eff — ,
j;jmax 1/TadT

e The high-temperature behavior of 1 and ( is strongly correlated with other parameters.
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Correlation between high-temperature viscosity with pre-equilibrium parameter
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e In JETSCAPE, the free-streaming model in the pre-eq stage
does not drive the system close to equilibrium.

e Amount of off-equilibrium effects depend on the matching

time between pre-eq dynamics & hydro Thydro = Tr (i>

€o

e Observe a strong correlation between high-T 7/s and the

matching time scale in the posterior.



Improvements of the pre-equilibrium models

(a) (b)
1.0 1 0257
90% Prior /1 90% Prior
90% C.I | 90% C.1
081 60% C.I ] 0.204 60% C.1
0% ClforN > 25 ) 0% ClforN > 25
% C s e ! % C1. for N =
06! 90%CLforN =25 | 018 90% C.. for N = 25
3 -2 1 “
[ ] B n
| 1
04 . 1 0101 BN
1 \
1 \ \
1 | N
02 0.05 \
L T - [} N
[ 2. s emmmmmmmnnT _,....-f { \
(e®Sau_, -2 \ | s
- i~ ~
0.0 - - 0.00
w2 %21
s >+
& /\_/\ 3
0 0
0.2 03 04 05 06 07 02 03 04 05 06 0.7
T[Gev] T(GeV]

[Liyanage, Siirer, Plumlee, Wild, Heinz RPC108(2023)054905 |

e In viscous anisotropic hydrodynamics (VAH), matching uncertainty between pre-eq
dynamics and hydro is reduced. Result in a stronger constrain of 1)/s and (/s at high T.
e Worth checking in other models, such as using the QCD effective kinetic theory to bridge
the gap.
28



Functional prior

Suppose we parametrize some temperature-dependent quantities:

4(T) A

n —
T3 1+ C(T/T)"

DTy = {Q

S| S } kink

+O(T — Tp)anign(T — Tyy) + -+,

e Contains long-range correlations: every parameter affects a large range of temperature.

e Contains a high-degree of nonlinearity

3.0 3.0

25 ® Training data 2s e Training data . .
: — Fa °l, —re=a) Unnecessary complication for
201 e --- GP interpolation 20 === GP interpolation

15 15

the machine-learning tools
Nonlinea:
a,b,c —="_ f(a, b, c)

parametrization

f(a, b, C) well-behaved

models

1.0 1.0

F(a)
F(a’)

05 05

0.0 0.0

Observables

~05 -05

“10 -1.0
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Use random field as the prior of an unknown functional

102](@ (b) Use a random function/random field to model the prior
100 random §(T)/T? Prior, 95% CI .
samples for training |c<< High T var., 95% C| of an unknown function.

Low-T var.,95% ClI

Prior[F(x)] = e~} /& (FGI=()C (X JFG)—n(x)

Advantage: suppresses long-range correlation.

Small degree of non-linearity.

0.15 0.25 0.35 045 0.15 0.25 0.35 0.45 . S — 1[M(F)—Exp],£;  [M(F)—Exp]
TGV TGV Posterior[F(x)] = Prior[F(x)]e” 2 i J

Marginalization on the distribution of F(x) at x = xg

Ply = F(x)] = /DF(X)(S(F(XO) — y)Posterior[F(x)]
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Inference formulated as a field theory problem

e Field-theory approach to infer an 1D probability e Extract the temperature dependence of

distribution from N independent draws the jet transport parameter:
[PRL77(1996)4693, hep-ph/9808474v1] (a) Au+Au 0.2 TeV (b) Pb+Pb, 2.76 TeV
12.5 95% Cl of posterior 95% CI of posterior
Field Theories for Learning Probability Distributions c)(f"’
10.0{ o9 gl
William Bialek.' Curtis G. Callan.” and Steven P. Strong' %

INEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540
*Department of Physics, Princeton University, Princeton, New Jersey 08544
(Received 25 July 1996)

7.5

ar?

Imagine being shown N samples of random variables drawn independently from the same di 5.0
‘What can you say about the distribution? In general, of course, the answer is nothing, unless you have )
some prior notions about what to expect. From a Bayesian point of view one needs an a priori
distribution on the space of possible probability distributions, which defines a scalar field theory. In 2‘5
one dimension, free field theory with a normalization constraint provides a tractable formulation of the
problem, and we discuss g lizations to higher di i [S0031-9007(96)01804-2]

0.0 T - - - -
Functional statistical inference of parton distributions 0.15 0.25 0.35 0.15 025 0.35 0.45
T [GeV] T [GeV]
Vipul Periwal
Department of Physics, Princeton University, Princeton, New Jersey 08544 [M. Xie, WK, H. Zhang, X.-N. Wang
Bialek, Callan and Strong have recently given a solution of the problem of determining a con- ' ' '

tinuous probability distribution from a finite set of experimental measurements by formulating it as PRC108(2023) L011901 ]
a one-dimensional quantum field theory. This report applies an extension of their formalism to the
inference of functional parton distributions from scattering data.

e For applications in astrophysics @I @D
31


https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html
https://arxiv.org/abs/physics/9912005

e With complex models as used in HIC, the importance of uncertainty quantification is
widely accepted. Bayesian analysis has been adopted in many works.

e Understanding the source of uncertainty is the first step of performing a Bayesian analysis.

e Simple machine learn tools is integrated to accelerate Bayesian analysis:
Gaussian Process-based model emulators + PCA dimensional reduction.

e Uncertainty quantification cannot tell something we don’'t “know", theory/model
improvement is always important.

e The prior choice is nontrivial, especially for functional inference. Random fields may be a
reasonable choice.
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Questions?
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