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A widely used tool in nuclear physics across energy scales

[JETSCAPE, PRC103(2021)054904] [Kuttan et al, PRL131(2023)202303] [Trajectum, PRC106(2022)044903]

[BAND, Nat.Phys.17 (2021)1408]

The General Principle is simple: the Bayes’ Theorem.

Posterior︷ ︸︸ ︷
P(xtrue|M, yexp) =

Likelihood︷ ︸︸ ︷
L(yexp|M, xtrue)

Prior︷ ︸︸ ︷
P0(xtrue)∫

L(x)P0(x)dx→ Evidence

How certain we are on a statement given the data and the

theory/model? Make predictions and identify anomalies.
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Sources of uncertainties

• The exact likelihood function is often unknown. Often molded by multivariate Gaussian:

ln L(x) = −N

2
ln(2π)− 1

2
ln |Σ| − 1

2
∆y(x)Σ−1∆yT (x), ∆y(x) = yM(x)− yexp

• Covariance Σ encodes experimental. theory/model uncertainty

Σij = δij [(δy
exp
stat)2

i + (δy exp
sys,0)2

i ]︸ ︷︷ ︸
Uncorrelated uncertainty

+ (δy exp
sys )i (δy

exp
sys )jcij︸ ︷︷ ︸

Correlated uncertainty

+ Σemulator
ij︸ ︷︷ ︸

Interpolation

+ Σtheory
ij︸ ︷︷ ︸

theory

• Uncertainty of nuisance parameters propagated by marginalization

P(p1) =

∫
P(p1, p2, p3, · · · )dp2dp3 · · ·
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The prior and the uncertainty

Thank Dr. Yi Yin for reminding me of an interesting connection. He asked me “Is the

following statement some form of Bayes’ theorem? and 04/22 is Kant’s 300’s birthday”.

[http://www.gutenberg.org]

“Kant maintained, knowledge must rest on judgments that are

a priori, for it is only as they are separate from the contingen-

cies of experience that they could be necessary and yet also syn-

thetic—i.e., so that the predicate term contains something more

than is analytically contained in the subject.”

—Period of the three Critiques of Immanuel Kant, Encyclopaedia Britannica

While in Bayes’ theorem, the prior can be either analytic (e.g., causality bounds on the

transport parameters) or empirical (old data) and even biased. So the choice of prior also

affects uncertainty quantification.
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Outline

Review HIC modeling and uncertainties

Bayesian analysis of bulk matter properties

Information gain and the prior
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Review HIC modeling and

uncertainties



The spirit of a multi-stage modeling

L⊥ ∼ 10 fm

τ = 0+ 1 fm/c 10 fm/c

Time
Modified from figs by J. E. Bernhard.

• τ = 0+: almost instantaneous energy deposition from the two nuclei pancake.

• τ < τR : longitudinal expansion driven, pre-equilibrium stage.

• τ ∼ L⊥: hydrodynamic pressure driven stage.

• τR∇⊥ ∼ 1,T < Tc : hadronic transport stage.
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From the Glauber model to the initial energy deposition model

• Glauber model determines the probability for AB to collide

at given impact parameter.

• Map participant nucleon density TA.B to Tµν(x, ηs) at

τ = 0+. With boost invariance:

dET

dx2
⊥dηs

(x⊥, ηs = 0) = Norm× f (TA(x⊥),TB(x⊥))

• Direct related to nuclear structure, but often heavily relies

on modeling. TRENTo is one of the many ansatz:

f (TA,TB) =

(
T p
A + T p

B

2

)1/p
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A motivation for the TRENTo ansatz

To mimic and test different

scaling behavior of energy

deposition.

[Slide from J. S. Moreland]
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Some new worries of initial-condition model

• Centrality (quantiled total inelastic cross-section of AB) is a

main handle on the impact parameter b and geometry!

• Calculation of σAB =
∫
d2bPcoll(b) relies on Glauber model.

• In the derivation of Glauber formula (σpA), one assumes that

ρA(r1, · · · , rn) ≈∏i ρ1(ri ). Then, Pcoll(b) can be expressed as functional of

nuclear thickness function.

• But the assumption may not work well for a wave function like

|ψ〉 =
∑

~β C (~β)|φ; ~β〉.
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Pre-equlibirum stage

Fast longitudinal expansion dominate over collisions
τ−1
R

τ−1 � 1

• Zeroth order theory: use collisionless Boltzmann equation to

evolve T ττ (xT , τ = 0+) to Tµν(xT , τhydro) [PRC91(2015)064906].

• QCD Effective Kinetic Theory. Brings the system closer to local

equilibrium. [Kurkela et al, PRL122(2019)122302]

• Anisotropic hydro: gradient expansion around an anisotropic

distribution function, extend hydro theory towards early time.

[Florkowski Ryblewski, Martinez, Strickland, McNelis, Bazow, Heinz et al.]

Main uncertainty: how the system approach to hydrodynamization, and the matching

time scale τhydro.
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Applications and developments of the relativistic hydrodynamics

10 fm

Idea
l

η/s=0.2

100 200 300 350
Temperature [MeV]

τ= 1 fm/c

2 fm/c 3 fm/c 5 fm/c

Sensitivity of flow development to viscosity.

The hydrodynamic stage

Tµν = euµuν + (uµuν − gµν)(P(e) + Π) + πµν

π̇µν = −π
µν + 2η∂〈µuν〉

τπ
· · · ,

Π̇ = −Π + 2ζ∇ · u
τΠ

· · ·

Main uncertainty: validity of the gradient expansion,

higher-order transport coefficients.
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Particlization of fluid element

An ill-defined inverse problem: how to reconstruct the distribution function

feq(p, x) + δfi (p, x) for each specie of hadrons from Tµν(x) and conversed currents.

Different models result in different momentum dependence and hadron chemistry.

• Grad 14-moment expansion δf (p) ∝ Aππ
µνp〈µpν〉 + Π(ATm

2
i + AE (p · u)2)

• Using 1st-order Chapman-Enskog solution to RTA Boltzmann equation.

δf ∝ πµνp
〈µpν〉

2βπ(p · u)T
+

Π

βΠ

(F(p · u)

T 2
− ∆µνp

µpν

3(p · u)T

)
• Rotate, stretch, and rescale the equilibrium distribution (Pratt-Torrieri-Bernhard/McNelis)

feq + δf = Zfeq
(
pi → [(1 +

Π

3βΠ
)δij + πij ]pj ,T → T + β−1

Π ΠF
)

How to match a hadron resonance gas EoS (missing states? resonance width?

f0(500)?) to lattice QCD EoS near Tc .
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Hadronic afterburner

The particlized system is then solved by a hadronic transport equation

∂

∂t
fi + v · ∇x fi −∇xEi · ∇pfi =

∑
i,j,···

C [fi , fj , · · · ].

• The potential term is often turned-off in the afterburner for ultra-relativistic collisions.

• Parametrization of some hadronic cross-sections.

Despite all these uncertainties, Bayesian analysis allows us to learn something with

certainty.
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Essential for making quantitative progress

• 2000s: order of magnitude from pQCD.

• 2004: strongly coupled theory η/s = 1/(4π) + · · · .
• 2006-2013: eyeball fit with viscous hydro (η/s)eff = 0.1–0.2

• 2013–: Bayesian analysis of EoS and η/s with uncertainty.

• 2016–: Temperature-dependent shear and bulk viscosity η/s(T ), ζ/s(T ).

• 2021–: Bayesian model averaging, model improvement, novel observables.
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Bayesian analysis of bulk matter

properties



For simple models

Parameter space (x)

(with prior knowledge)

Model

Prediction y(x)

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior
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For computationally intensive model

Parameter space (x)

(with prior knowledge)
Emulator: fast prediction

of y given “arbitrary” x,

trained on {xi, y(xi)}
A finite set of model

prediction {xi, y(xi)}

Prediction

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior
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A class of non-parametric emulators: Gaussian emulators

y(x) = µ(x)± σ(x)

Gaussian emulators: to interpolate the value of y at a new

input x , it makes use of how y(x) correlates with all the

training data y(xT ,i ) = yT ,i , i = 1, 2, · · ·m.

• The distribution of y(x) is also a normal distribution

P(y(x)) = N (µ, σ2)

µ(x) = K (x , ~xT )K−1(~xT , ~xT )~yT ,

σ2(x) = K (x , x)− K (x , ~yT )K−1(~yT , ~yT )K (~yT , x))

• Interpolation uncertainty

Σij = δij [(δy
exp
stat)2

i + (δy exp
sys,0)2

i ] + (δy exp
sys )i (δy

exp
sys )jcij

+ Σemulator
ij + Σtheory

ij
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The workflow for analyzing a computationally intensive model

Parameter space (x)

(with prior knowledge)
Emulator: fast prediction

of y given “arbitrary” x,

trained on {xi, y(xi)}
A finite set of model

prediction {xi, y(xi)}

Prediction

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior
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For an array of observables

Parameter space (x)

(with prior knowledge)
Emulate f (pT ,1)

Emulate f (pT ,2)

· · ·
Emulate f (pT ,N−1)

Emulate f (pT ,N)

A finite set of model

prediction {xi, y(xi)}

Prediction

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior
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Dimensional reduction via the Principal-Component Analysis (PCA)

Vector observables at m input points.

~yT (~xT ,1) = (y
[1]
1 , y

[1]
2 , · · · y [1]

N ),

· · ·
~yT (~xT ,m) = (y

[m]
1 , y

[m]
2 , · · · y [m]

N ),

Quantify obs variations w.r.t. parameters

[Cov]ij =
1

m

m∑
s=0

(
y

[s]
i − ȳi

)(
y

[s]
j − ȳj

)
,

ȳj =
1

m

m∑
s=0

y
[s]
j

PCA: orthogonal transformation of the basis to an empirical basis

(
OT
)
ik

[Cov]kl (O)lj =

λ1 0 ~0

0 λ2
~0

~0T ~0T · · ·

 λ1>λ2�λ3···−−−−−−−−→

λ1 0 ~0

0 λ2
~0

~0T ~0T 0


• In the new basis, the new observables (features) are Zi =

[
OT
]
ij
yj .

• Zi ,Zj ’s change with x are linearly independent (there may be non-linear correlations).

Dimensional reduction: Zi ≈ [Z1(x),Z2(x), 0, · · · ]
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The workflow of the emulator+PCA-assisted Bayesian analysis

Parameter space (x)

(with prior knowledge)Emulate Z1(x),

trained on (OT yt)

Emulate Z2(x),

trained on (OT yt)

Inverse PCA transforma-

tion: y=O[Z1,Z2, 0, · · · ]

A finite set of model

prediction {xi, y(xi)}

Prediction

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior

The emulator + PCA truncation uncertainty:

Σemulator
ij (x) = Oik

σ2
1(x) 0 0

0 σ2
2(x) 0

0 0 λ3 · · ·


k`

(OT )`j
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Diagnosis tools and validation test

• Modern analysis framework often provides diagnosis tools to access the performance of each

module (emulators, PCA, etc).

• A final validation test for the final analysis O [JETSCAPE PRC103(2021)054904].
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Calibrate the multi-stage model

Energy deposition model

+ Preequiblirum dynamics

+ Relativistic viscous hydrodynamics

+ Freeze-out to hadron resonance gas

+ Hadronic transport model

[Jonah E. Bernhard Ph.D. dissertation]
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Calibrate the multi-stage model

[Jonah E. Bernhard Ph.D. dissertation] 22



Marginalized posterior distribution of shear and bulk viscosity

[JE Bernhard, JS Moreland, SA Bass, Nat. Phys.

15(2019)1113–1117.]

η/s = (η/s)min + (η/s)slope(T − Tc)

(
T

Tc

)(η/s)curv

ζ/s =
(ζ/s)max

1 + (T − (ζ/s)T0 )2/(ζ/s)2
width

With a high degree of confidence:

• Quark-gluon plasma (QGP) is strongly coupled

η/s = (1 · · · 2)/(4π).

• QGP has a nonzero bulk viscosity.
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Model uncertainty and Bayesian model averaging

Use Bayesian model averaging (BMA) to take into account the uncertainty in the fluid-cell

particlization procedure:

PBMA(x |yexp, {Mi}) =
∑
i

P(x |yexp,Mi )︸ ︷︷ ︸
Posterior for model “i”

× P(yexp|Mi )︸ ︷︷ ︸
Evidnece of model ‘i”

[JETSCAPE Collaboration, Phys.Rev.Lett. 126 (2021) 24, 242301]

After model averaging (orange

bands), the BMA posterior is

dominated by the one with the

highest evidence.
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Information gain and the prior



Quantify the information gain

To quantify the difference between posterior and prior

• Use the “Kullback–Leibler divergence” (KL divergence, DKL) to measure the “distance”

between two distributions P1 and P2

DKL(P1‖P2) ≡
∫

dxP1(x) ln
P1(x)

P2(x)
, we take P1 =Posterior, P2 =Prior.

• If DKL = 0, then the posterior is the same as our prior belief, nothing new...

• DKL > 0 signatures information gain from experimental data.
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Quantify the information gain

Little sensitivity to viscosity at high T

(DKL(T > 0.25GeV) ≈ 0). Most

information gains in low-temperature

regions. Possible reasons:

• Some observable only sensitive to “averaged η/s” [J-F Paquet, SA Bass, PRC102(2020)014903]

(η/s)eff =

∫ Tmax

Tsw
η/s(T )/TαdT∫ Tmax

Tsw
1/TαdT

• The high-temperature behavior of η and ζ is strongly correlated with other parameters.
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Correlation between high-temperature viscosity with pre-equilibrium parameter

τR α

alow

ahigh
• In JETSCAPE, the free-streaming model in the pre-eq stage

does not drive the system close to equilibrium.

• Amount of off-equilibrium effects depend on the matching

time between pre-eq dynamics & hydro τhydro = τR

(
e
e0

)α
.

• Observe a strong correlation between high-T η/s and the

matching time scale in the posterior.
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Improvements of the pre-equilibrium models

[Liyanage, Sürer, Plumlee, Wild, Heinz RPC108(2023)054905 ]

• In viscous anisotropic hydrodynamics (VAH), matching uncertainty between pre-eq

dynamics and hydro is reduced. Result in a stronger constrain of η/s and ζ/s at high T .

• Worth checking in other models, such as using the QCD effective kinetic theory to bridge

the gap.
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Functional prior

Suppose we parametrize some temperature-dependent quantities:

η

s
(T ) =

[η
s

]
kink

+ Θ(T − Tη)ahigh(T − Tη) + · · · , q̂(T )

T 3
=

A

1 + C (T/Tc)n

• Contains long-range correlations: every parameter affects a large range of temperature.

• Contains a high-degree of nonlinearity

Unnecessary complication for

the machine-learning tools

a, b, c
Nonlinear−−−−−−−−−−→

parametrization
f (a, b, c)

f (a, b, c)
well-behaved−−−−−−−−→

models
Observables
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Use random field as the prior of an unknown functional

Use a random function/random field to model the prior

of an unknown function.

Prior[F (x)] = e−
1
2

∫
dxdx′(F (x)−µ(x))C−1(x,x′)(F (x)−µ(x))

Advantage: suppresses long-range correlation.

Small degree of non-linearity.

Posterior[F (x)] = Prior[F (x)]e−
1
2 [M(F )−Exp]iΣ

−1
ij [M(F )−Exp]j

Marginalization on the distribution of F (x) at x = x0

P[y = F (x0)] =

∫
DF (x)δ(F (x0)− y)Posterior[F (x)]
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Inference formulated as a field theory problem

• Field-theory approach to infer an 1D probability

distribution from N independent draws

[PRL77(1996)4693, hep-ph/9808474v1]

• Extract the temperature dependence of

the jet transport parameter:

[M. Xie, WK, H. Zhang, X.-N. Wang

PRC108(2023)L011901.]

• For applications in astrophysics link link
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https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html
https://arxiv.org/abs/physics/9912005


Summary

• With complex models as used in HIC, the importance of uncertainty quantification is

widely accepted. Bayesian analysis has been adopted in many works.

• Understanding the source of uncertainty is the first step of performing a Bayesian analysis.

• Simple machine learn tools is integrated to accelerate Bayesian analysis:

Gaussian Process-based model emulators + PCA dimensional reduction.

• Uncertainty quantification cannot tell something we don’t “know”, theory/model

improvement is always important.

• The prior choice is nontrivial, especially for functional inference. Random fields may be a

reasonable choice.
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Questions?
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