Reduce the uncertainties

$au^+ au^-$ atom and au mass

Yu-Jie Zhang

Beihang Univeisity

J.H. Fu, S. Jia, X.Y. Zhou, Y.J. Zhang, C.P. Shen, C.Z. Yuan, 2305.00171

2024.01.17 @ IHEP

・ロト・日本・日本・日本・日本・日本

Reduce the uncertainties

Outline

1 Introduction $au^+ au^-$ atom au mass

- **2** The frame of Calculation
- **3** Reduce the uncertainties
- **4** Summary

Reduce the uncertainties

1 Introduction

 $au^+ au^-$ atom

au mass

2 The frame of Calculation

3 Reduce the uncertainties

Reduce the uncertainties

1 Introduction $\tau^+\tau^-$ atom

au mass

2 The frame of Calculation

3 Reduce the uncertainties

Introduction

- **1** QED atoms $(e^+e^-, \mu^+e^-, \tau^+e^-, \mu^+\mu^-, \tau^+\mu^-, \tau^+\tau^-)$ are composed of unstructured and point-like lepton pairs, simple than the hydrogen formed of a proton and an electron.
- The properties of QED atoms have been studied to test QED, fundamental symmetries, New Physics, gravity, and so on (hep-ex/0106103, 0912.0843, 1710.01833, 1802.01438, Phys.Rept. 975 (2022) 1-61).
- 3 Only positronium (e^+e^-) and muonium (μ^+e^-) had been discovered in 1951 and 1960 respectively.

ntrod	uction	
0000	000000000000000000000000000000000000000	

Positronium

- 1 Positronium was discovered by Martin Deutsch in 1951.
- I'm really glad that I did not get the Nobel Prize in 1956. It would have spoiled my life." by Martin Deutsch
- S Positronium in medicine and biology: Nature Reviews Physics 1 (2019)527, Rev. Mod. Phys. 95 (2023) 021002.

True muonium

The Frame of Calculation

Reduce the uncertainties

I nar

New colliders for true muonium

- 1 DIMUS: super-compact Dimuonium Spectroscopy collider at Fermilab, 2203.07144.
- **2** True muonium $@ e^+e^-$ colliders with standard crossing angle, 2309.11683.

◆□ > ◆□ > ◆ □ > ◆ □ > ▲ □ > ◆ □ > ◆ ○ ◆

Reduce the uncertainties

$au^+ au^-$ atom

- 1) $\tau^+\tau^-$ atom is the smallest QED atom for Bohr radius is 30.4 fm (Moffat:1975uw)
- 2 $\tau^+\tau^-$ atom is is named tauonium (Avilez:1977ai,Avilez:1978sa), ditauonium (2204.07269, 2209.11439), and true tauonium (2202.02316).
- **3** We named them following charmonium just as $J_{\tau}(nS)$ for $n^{2S+1}L_J = n^3S_1$ and $J^{PC} = 1^{--}$, $\chi_{\tau J}(nP)$ for $n^{2S+1}L_J = n + 1^3P_J$ and $J^{PC} = J^{++}$.
- **4** The production η_{τ} (2202.02316), and J_{τ} (2302.07365).

Reduce the uncertainties

The spectroscopy of $\tau^+\tau^-$ atom, 2204.07269

Reduce the uncertainties

$\gamma\gamma ightarrow \eta_{ au} ightarrow \gamma\gamma$, 2202.02316

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.		$\sigma \times \mathcal{B}_{\gamma\gamma}$					$N imes \mathcal{B}_{\gamma\gamma}$	
	$\eta_{\rm c}(1{ m S})$	$\eta_{\rm c}(2{ m S})$	$\chi_{\rm c,0}(1{\rm P})$	$\chi_{\rm c,2}(1{\rm P})$	LbL	${\mathcal T}_0$	${\mathcal T}_0$	$\chi_{\rm c,2}(1{\rm P})$
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	-	-
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500
e^+e^- at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3\cdot 10^5$
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62

The Frame of Calculation

Reduce the uncertainties

$\gamma\gamma \rightarrow \eta_{ au} \rightarrow \gamma \gamma$ at Z pole, 2202.02316

- * ロ * * 団 * * 玉 * * 王 * うえぐ

Reduce the uncertainties

$e^+e^- ightarrow J_ au ightarrow \mu^+\mu^-$ at STCF, 2302.07365

TABLE IV: Cross sections and expected number of events for the *s*-channel production of ortho-ditauonium (\mathcal{T}_1), and for the $\tau^+\tau^$ and (background) $\mu^+\mu^-$ continua, in e^+e^- at $\sqrt{s} \approx m_T$ at various facilities. The last column lists the expected signal statistical significance.

Colliding system, \sqrt{s} ($\delta_{\sqrt{s}}$ spread), \mathcal{L}_{int} , experiment		σ			Ν		S/\sqrt{B}
	${\mathcal T}_1$	$ au^+ au^-$	$\mu^+\mu^-$	${\mathcal T}_1$	$\mathcal{T}_1 \to \mu^+ \mu^-$	$\mu^+\mu^-$	
e^+e^- at 3.5538 GeV (1.47 MeV), 5.57 pb ⁻¹ , BES III	1.9 pb	117 pb	6.88 nb	10.4	2.1	38 300	0.01σ
e^+e^- at $\sqrt{s} \approx m_T$ (1.24 MeV), 140 pb ⁻¹ , BES III	2.2 pb	103 pb	6.88 nb	310	63	$9.63\cdot 10^5$	0.06σ
e^+e^- at $\sqrt{s} \approx m_T$ (1 MeV), 1 ab ⁻¹ , STCF	2.6 pb	95 pb	6.88 nb	$2.6\cdot 10^6$	$5.3\cdot 10^5$	$6.88\cdot 10^9$	6.4σ
e^+e^- at $\sqrt{s} \approx m_T$ (100 keV), 0.1 ab ⁻¹ , STCF	22 pb	46 pb	6.88 nb	$2.2\cdot 10^6$	$4.5 \cdot 10^5$	$6.88\cdot 10^8$	17σ

- **1** S/\sqrt{B} is 6.4 σ (17 σ) with 1 ab^{-1} data and $\delta_W = 1(0.1)$ MeV.
- 2 With monochromatized beams can also provide a very precise extraction of the tau lepton mass with at least O(25 keV) uncertainty.

 The Frame of Calculation

Reduce the uncertainties

Monochromatization @ $e^+e^- \rightarrow H$ @ FCC-ee, EPJP 137 (2022) 1, 31

Fig. 1. FCC-ee monochromatization scheme featuring interaction-point dispersion of opposite sign for the two colliding beams, with (left) or without crab crossing and integrated resonance scan (right). Different colours schematically indicate bunch portions with slightly different energies.

Reduce the uncertainties

Recent progress: NNNLO

- 1 AMFlow: 2201.11669, 2201.11636, 2201.11637
- 2 $e^+e^- \rightarrow t\bar{t}$ at NNNLO in QCD, 2209.14259
- $\Im \ \Upsilon
 ightarrow e^+e^-$, decay constant of B_c , 2207.14259, 2208.04302

Reduce the uncertainties

1 Introduction $\tau^+\tau^-$ atom

au mass

2 The frame of Calculation

3 Reduce the uncertainties

Reduce the uncertainties

au

Need more precise measurements $m_{ au}$, $\Gamma_{ au}$, $(g-2)_{ au}$ in PDG 2022

au

$$J = \frac{1}{2}$$
Mass $m = 1776.86 \pm 0.12 \text{ MeV}$
 $(m_{\tau^+} - m_{\tau^-})/m_{\text{average}} < 2.8 \times 10^{-4}, \text{ CL} = 90\%$
Mean life $\tau = (290.3 \pm 0.5) \times 10^{-15} \text{ s}$
 $c\tau = 87.03 \ \mu\text{m}$
Magnetic moment anomaly $> -0.052 \text{ and } < 0.013$, CL = 95%
 $\text{Re}(d_{\tau}) = -0.220 \text{ to } 0.45 \times 10^{-16} \text{ ecm}, \text{ CL} = 95\%$
 $\text{Im}(d_{\tau}) = -0.250 \text{ to } 0.0080 \times 10^{-16} \text{ ecm}, \text{ CL} = 95\%$

1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $m_{ au}$ and lepton universality, 1405.1076

• Comparing the electronic branching fractions of τ and $\mu,$ lepton universality can be tested as

$$\left(rac{g_{ au}}{g_{\mu}}
ight)^2 = rac{ au_{\mu}}{ au_{ au}} \left(rac{m_{\mu}}{m_{ au}}
ight)^5 rac{B(au o e
u ar{
u})}{B(\mu o e
u ar{
u})} (1 + F_W)(1 + F_{\gamma}),$$
(1)

• BESIII measurement, 1405.1076

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^2 = 1.0016 \pm 0.0042,$$
 (2)

Reduce the uncertainties

Measured m_{τ} , 175 M enents with 190 fb⁻¹, Belle II 2305.19116

Reduce the uncertainties

m_{τ} measurement at BESIII, 1405.1076

Scan	$E_{\rm CM}$ (MeV)	$\mathcal{L}(\mathrm{nb}^{-1})$	_	2.0
J/ψ	3088.7	78.5 ± 1.9	$\widehat{\mathbf{O}}$	
	3095.3	219.3 ± 3.1	č	F
	3096.7	243.1 ± 3.3	J	15
	3097.6	206.5 ± 3.1		
	3098.3	223.5 ± 3.2	ō	
	3098.8	216.9 ± 3.1	Ę;	
	3103.9	317.3 ± 3.8	Ö	1.0 -
au	3542.4	4252.1 ± 18.9	Ð	
	3553.8	5566.7 ± 22.8	S	
	3561.1	3889.2 ± 17.9	ŝ	
	3600.2	9553.0 ± 33.8	ő	
ψ'	3675.9	787.0 ± 7.2	Ö	
	3683.7	823.1 ± 7.4		- / -
	3685.1	832.4 ± 7.5	O	
	3686.3	1184.3 ± 9.1		
	3687.6	1660.7 ± 11.0		3540 3550 3560 3570 3580 3590 3600 3610
	3688.8	767.7 ± 7.2		(N/(N/a)/)
	3693.5	1470.8 ± 10.3		

・ロト・日本・日本・日本・日本・日本

Reduce the uncertainties

m_{τ} measurement at BESIII, 1405.1076

final state	1		2	2		3	4	4	to	otal
	Data	MC	Data	MC	Data	MC	Data	MC	Data	MC
ee	0	0	4	3.7	13	12.2	84	76.1	101	92.0
$e\mu$	0	0	8	9.1	35	31.4	168	192.6	211	233.1
$e\pi$	0	0	8	8.6	33	29.7	202	184.4	243	222.6
eK	0	0	0	0.5	2	1.8	16	16.9	18	19.3
$\mu\mu$	0	0	2	2.9	8	9.2	49	56.3	59	68.4
$\mu\pi$	0	0	4	3.9	11	14.1	89	86.7	104	104.7
μK	0	0	0	0.2	3	0.8	7	9.0	10	10.1
$\pi\pi$	0	0	1	2.0	5	7.7	57	54.0	63	63.8
πK	0	0	1	0.3	0	0.8	10	8.2	11	9.3
KK	0	0	0	0.0	1	0.1	1	0.3	2	0.4
$e\rho$	0	0	3	6.1	19	20.6	142	132.0	164	158.7
μho	0	0	8	3.3	8	11.8	52	63.3	68	78.5
πho	0	0	5	3.4	15	10.8	97	96.0	117	110.2
Total	0	0	44	44.2	153	151.2	974	975.7	1171	1171.0

Ξ.

く注→

Reduce the uncertainties

New data taking scenario at BESIII, from Zhang Jianyong TAU2018

Data comparison

	J/ψ	Ψ'		т (рb-1)					
	(pb-1)	(pb-1)	3540	3553	3554	3560	3600		
			MeV	MeV	MeV	MeV	MeV		
2011	1.5	7.5	4.3	0	5.6	3.9	9.6		
2018	32.6	67.2	25.5	42.6	27.1	8.3	13.9		

Reduce the uncertainties

Statistical uncertainty < 45 keV, systematical uncertainty 90 keV, 1812.10056

Three energy regions:

- Low energy region Point 1, 14 pb⁻¹, to determine background
- Near threshold Point 2, 39 pb⁻¹ and point 3, 26 pb⁻¹, to determine tau mass
- High energy region Point 4, 7 pb⁻¹ for X² check Point 5, 14 pb⁻¹ to determine detection efficiency

Total lum. ~100pb⁻¹, uncertainty: 0.1MeV

We obtain more than 130 pb⁻¹ tau scan data!

Zhang Jianyong

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

э.

Reduce the uncertainties

1 Introduction

2 The frame of Calculation

3 Reduce the uncertainties

4 Summary

Reduce the uncertainties

$e^+e^- \rightarrow \tau^+\tau^- \rightarrow \nu X^- \bar{\nu} X^+$ around the $\tau^+\tau^-$ production threshold

Updated cross sections

$$\sigma_{ex}(W, m_{\tau}, \Gamma), \delta_{w}) = \int_{m(J_{\tau})}^{\infty} dW' \frac{e^{-\frac{(W-W')^{2}}{2\delta_{w}^{2}}}}{\sqrt{2\pi}\delta_{w}} \int_{0}^{1-\frac{W(J_{\tau})^{2}}{W'^{2}}} dx F(x, W') \frac{\bar{\sigma}(W'\sqrt{1-x}, m_{\tau}, \Gamma)}{|1-\Pi(W'\sqrt{1-x})|^{2}}$$

2 Cross sections in BESIII, 1405.1076

$$\sigma(E_{\rm CM}, m_{\tau}, \delta_w^{\rm BEMS}) = \frac{1}{\sqrt{2\pi}\delta_w^{\rm BEMS}} \int_{2m_{\tau}}^{\infty} dE_{\rm CM}' e^{\frac{-(E_{\rm CM} - E_{\rm CM}')^2}{2(\delta_w^{\rm BEMS})^2}} \int_0^{1-\frac{4m^2}{E_{\rm CM}'}} dx F(x, E_{\rm CM}') \frac{\sigma_1(E_{\rm CM}'\sqrt{1-x}, m_{\tau})}{|1-\prod(E_{\rm CM})|^2}$$

3 Difference: shift $2m_{\tau}$ to $m(J_{\tau})$ in the range of integration and add Γ_{τ} as a variable of the cross sections after including $J_{\tau}(nS)$ atom.

Reduce the uncertainties

$\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$, orthogonal perfect normalized basis, 1312.4791

$$\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau}) = \frac{4\pi\alpha^2}{3W^2} \frac{24\pi}{W^2} \text{Im} \left[G_{\bar{\nu}X^+\nu X^-}(0, 0, W - 2m_{\tau}) \right], \quad (3)$$

2 $G_{\bar{\nu}X^+\nu X^-}(\vec{r},\vec{r}',E)$ represents a Green function of $\tau^+\tau^-$ currents in the non-relativistic effective theory, where $\tau^+\tau^-$ decay to $\bar{\nu}X^+\nu X^-$

$$G_{\bar{\nu}X^{+}\nu X^{-}}(\vec{r},\vec{r}',E) = \sum_{n} \frac{\psi_{n}(\vec{r})\psi_{n}^{*}(\vec{r}')}{E_{n}-E-i\epsilon} Br[n \to \bar{\nu}X^{+}\nu X^{-}] + \int \frac{d^{3}\vec{k}}{2\pi^{3}} \frac{\psi_{\vec{k}}(\vec{r})\psi_{\vec{k}}^{*}(\vec{r}')}{E_{\vec{k}}-E-i\epsilon},$$
(4)

3 Then

$$\bar{\sigma}(W) = \bar{\sigma}^{J_{\tau}}(W) + \bar{\sigma}(W)_{con.}$$
(5)

Reduce the uncertainties

Breit-Wigner formula

1 Green function approach to bound states is consistent with Breit-Wigner formula for a narrow bound states

$$\bar{\sigma}^{J_{\tau}}(W) = \sum_{n} \frac{6\pi^2}{W^2} \delta(W - m(J_{\tau}(nS))) \Gamma(J_{\tau}(nS) \to e^+e^-) Br(J_{\tau}(nS) \to \bar{\nu}X^+\nu X^-)$$
(6)

2 Ignore the binding Energy of $J_{\tau}(nS)$ for it much less than δ_{w}

$$\bar{\sigma}^{J_{\tau}}(W) = \frac{6\pi^2}{W^2} \delta(W - 2m_{\tau}) \sum_n \Gamma(J_{\tau}(nS) \to e^+ e^-) Br(J_{\tau}(nS) \to \bar{\nu}X^+ \nu X^-) \quad (7)$$

Decay mode of $J_{\tau}(nS)$

$$\Gamma_{total}(J_{\tau}(nS)) = \Gamma_{Ani}(J_{\tau}(nS)) + \Gamma_{Weak}(J_{\tau}(nS)) + \Gamma_{E1}(J_{\tau}(nS))$$

$$\Gamma_{Ani}(J_{\tau}(nS)) = (2+R)\Gamma(J_{\tau}(nS) \to e^{+}e^{-})$$

$$\Gamma_{Weak}(J_{\tau}(nS)) = 2\Gamma(\tau \to \nu X^{-})$$
(8)

Reduce the uncertainties

Parameters

Parameters

2 The resulting NLO expression for $\bar{\sigma}^{J_{\tau}}(W)$ is given by

$$\bar{\sigma}^{J_{\tau}}(W) = (3.11 \pm 0.02) \,\delta\left(\frac{W - 2m_{\tau} + 13.8 \,\mathrm{keV}}{1 \,\mathrm{MeV}}\right) \,\mathrm{pb},$$
 (10)

Decay mode of $J_{\tau}(nS)$

TABLE II: The decay data of $J_{\tau}(nS)$ in meV.

n	$\Gamma^{J_\tau(nS)}_{e^+e^-}$	$2\Gamma_{\tau}$	$\Gamma_{E1}^{J_\tau(nS)}$	$\Gamma^{J_{\tau}(nS)}_{\text{total}}$	$\Gamma^{J_{\tau}(nS)}_{e^+e^-}Br^{J_{\tau}(nS)}_{X^+Y^-E}$
1	6.484	4.535	0.0000	32.695	0.899
2	0.808	4.535	0.0000	8.044	0.455
3	0.239	4.535	0.0072	5.573	0.195
$\sum_{n=1}^{\infty}$					1.795 ± 0.012

Reduce the uncertainties

Cross sections from $J_{\tau}(nS)$

1 Then we get the $J_{\tau}(nS)$ contribution the cross section

1

$$\bar{\sigma}^{J_{\tau}}(W) = (3.11 \pm 0.02) \,\delta(W - 2m_{\tau}) \,\mathrm{pb} \,\mathrm{MeV}$$
(11)

2 Updated $\bar{\sigma}(W, m_{\tau}, \Gamma_{\tau})$

$$\bar{\sigma}(W) = (3.11 \pm 0.02) \delta\left(\frac{W - 2m_{\tau} + 13.8 \text{keV}}{\text{MeV}}\right) \text{ pb} + \theta(W - 2m_{\tau}) \bar{\sigma}_{con.}(W) (12)$$

3 Continue $\bar{\sigma}_{con.}(2m_{\tau})$

$$\bar{\sigma}_{Continue}(2m_{\tau}) = 236 \text{ pb} \tag{13}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 ・ ○ < ♡

The Frame of Calculation 0000000●

Reduce the uncertainties

Cross sections from $J_{\tau}(nS)$

Reduce the uncertainties

1 Introduction

2 The frame of Calculation

3 Reduce the uncertainties

4 Summary

・ロト・日本・日本・日本・日本・日本

Reduce the uncertainties

Reduce the uncertainties

1 The measured cross secitons

$$\sigma^{X+Y-\not\in}(W) = \frac{N^{X+Y-\not\in}(W)}{\mathcal{L}\varepsilon}$$
(14)

- 2 Uncertaintiy of ISR($\sim 0.5\%$ @ BESIII), the vacuum polarization factor (0.14%), and the integrated luminosity ($\sim 0.5\%$ @ BESIII) are all larger than 0.1%.
- **3** Systematical uncertainty of cross section measurement at STCF must > 0.2%.
- **4** The significance of 5σ require $S/\sqrt{(\Delta_{stat.}(B+S))^2 + (\Delta_{syst.}(B+S))^2} > 5$.
- **5** Ignore statistical uncertainty, significance of 5σ require S/B > 1% at STCF.

Reduce the uncertainties

Uncertainty of J/ψ decay: 10 B events

 $J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 3096.900 \pm 0.006$ MeV

Full width
$$\Gamma = 92.6 \pm 1.7$$
 keV (S = 1.1)

Scale factor/ p $J/\psi(1S)$ DECAY MODES Fraction (Γ_i/Γ) Confidence level (MeV/c) hadrons $(87.7 \pm 0.5)\%$ virtual $\gamma \rightarrow$ hadrons $(13.50 \pm 0.30)\%$ ggg (64.1 ± 1.0) % γgg 8.8 ± 1.1) % $e^+e^ 5.971 \pm 0.032$) % 1548 $e^+ e^- \gamma$ 8.8 \pm 1.4) \times 10⁻³ [hhaa] 1548 $5.961 \pm 0.033)$ % 1545 μ^{-}

- ▲ ロ ▶ ▲ 固 ▶ ▲ 固 ▶ ▲ 固 ▶ ④ ヘ ()

Reduce the uncertainties

Reduce the uncertainties

1 We introduce $R_{X^+Y^-\not\!\!\!\!E}$, ratio of the cross sections, as

$$R_{X^+Y^-\notin}(W,\delta_W,m_\tau) = \frac{\sigma(W,m_\tau,\Gamma_\tau,\delta_W)}{\sigma^{\mu^+\mu^-}(W,\delta_W)}.$$
(15)

Here, $\sigma^{\mu^+\mu^-}(W, \delta_W)$ is calculated with $\bar{\sigma}^{\mu^+\mu^-}(W) = \frac{4\pi\alpha^2(1+3\alpha/4\pi)}{3W^2}$. 2 The measurement is

$$\mathcal{R}_{X^+Y^-\not\in}(W,\delta_W,m_\tau) = \frac{N_{X^+Y^-\not\in}}{N_{\mu^+\mu^-}}.$$
(16)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Fit approach

1 A least-square fit is applied

$$\chi^{2} = \sum_{i=1}^{\infty} \left(\frac{\mathcal{R}_{i}^{\text{data}} - \hat{\mathcal{R}}_{i}(m_{\tau})}{\Delta \mathcal{R}_{i}^{\text{data}}} \right)^{2}.$$
 (17)

- 2 $\hat{\mathcal{R}}_i(m_{\tau})$ is the theoretical fit function with J_{τ} . The expected m_{τ} can be determined from the minimum value of χ^2 .
- **3** To quantify the significance of the J_{τ} , another fit is performed by excluding the $\bar{\sigma}^{J_{\tau}}$ in $\hat{\mathcal{R}}_i$. This leads to a new minimum value $\chi^2_{\text{without } J_{\tau}}$ at a new τ mass.
- **4** The significance of the J_{τ} atom can be calculated from $\Delta \chi^2_{J_{\tau}} = \chi^2_{\text{without } J_{\tau}} \chi^2$.

Reduce the uncertainties

Determine energy points

1 A least-square fit is applied

$$\chi^2 = \sum_{i=1}^3 \chi_i^2 = \sum_{i=1}^3 \left(\frac{\mathcal{R}_i^{\text{data}} - \hat{\mathcal{R}}_i(m_\tau)}{\Delta \mathcal{R}_i^{\text{data}}} \right)^2, \tag{18}$$

2 Where $\mathcal{R}_{i}^{\text{data}} = \frac{N_{x+Y-\not{E},i}^{\text{data}}}{N_{\mu+\mu^{-},i}^{\text{data}}}$ and $\Delta \mathcal{R}_{i}^{\text{data}}$ is its statistical uncertainty (the systematic uncertainty is discussed below).

- (3) The values of $\frac{\chi_i^2}{L_i}$ are relatively large at W = 3552.56 and 3555.83 MeV.
- ④ An additional energy point of 3549.00 MeV is needed to obtain the whole lineshape of the $e^+e^- \rightarrow X^+Y^- \not \in$ cross section.

TABLE III: Numbers of $e^+e^- \rightarrow X^+Y^- \not E$ and $\mu^+\mu^-$ events and their statistical uncertainties in the pseudoexperiments with $m_\tau = m_\tau^{\text{PDG}}$.

i	$\mathcal{L}_i/\mathrm{fb}^{-1}$	W_i/MeV	$N^{ m data}_{X^+Y^- olimits,\ i}$	$N^{ m data}_{\mu^+\mu^-,\ i}$
1	5	3549.00	$0.1^{+1.2}_{-0.1}$	$(1.1764 \pm 0.0003) \times 10^7$
2	500	3552.56	$(8.772 \pm 0.009) \times 10^5$	$(1.17394 \pm 0.00003) \times 10^9$
3	1000	3555.83	$(2.4052 \pm 0.0005) \times 10^7$	$(2.34331 \pm 0.00005) \times 10^9$

Determine χ^2 and m_{τ}

The Frame of Calculation

Reduce the uncertainties

1 A least-square fit is applied

$$\chi^{2} = \sum_{i=1}^{3} \left(\frac{\mathcal{R}_{i}^{\text{data}} - \hat{\mathcal{R}}_{i}(m_{\tau})}{\Delta \mathcal{R}_{i}^{\text{data}}} \right)^{2},$$
(19)

2 Where $\mathcal{R}_{i}^{\text{data}} = \frac{N_{\chi^{+}\gamma^{-}\not{E},i}^{\text{data}}}{N_{\mu^{+}\mu^{-},i}^{\text{data}}}$ and $\Delta \mathcal{R}_{i}^{\text{data}}$ is its statistical uncertainty.

3 And $\hat{\mathcal{R}}_i(m_{\tau})$ is the expected ratio at the τ mass m_{τ} to be determined from the fit.

Introduction

The Frame of Calculation

Reduce the uncertainties

Ratio of the events

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q ()

Reduce the uncertainties

The cross section of J_{τ}

Ξ.

(E) < E)
 </p>

Reduce the uncertainties

The statistical significance distribution in 10⁵ sets pseudoexperiments

æ

The significance of $J_{ au}(nS)$ as a function of $m_{ au}^{ m Natural} - m_{ au}^{ m PDG}$

The significance of $J_{\tau}(nS)$ in 10^5 sets pseudoexperiments

- 1 The average value of χ^2/ndf is 0.7/2 with $J_{\tau}(nS)$, and 51/2 without $J_{\tau}(nS)$.
- 2 Taking into account the systematic uncertainties, the average signal significance of J_{τ} is 6.7 σ , which is 6.8 σ without systematic uncertainties.
- **3** We conclude that in the scenario of taking 5 fb⁻¹ data at 3549.00 MeV, 500 fb⁻¹ at 3552.56 MeV, and 1000 fb⁻¹ at 3555.83 MeV, we have a 96% chance of discovering the $J_{\tau}(nS)$ with a statistical significance larger than 5σ and an almost 100% chance of observing it with a significance larger than 3σ .
- **4** These data samples correspond to 350 (175) days' runtime at the STCF(SCT).
- **5** If the δ_W is reduced to 0.1 MeV, the required integrated luminosity is only 66 fb⁻¹.

 m_{τ}

() With these data samples, a high precision τ mass is obtained

 $m_{\tau} = (1.776.860.00 \pm 0.25 \text{ (stat.)} \pm 0.99 \text{ (syst.)}) \text{ keV}.$

2 The fit with the $J_{\tau}(nS)$ contribution removed gives a shift of -4 keV relative to the nominal fit with both the bound state and continuum contributions.

- 1 The uncertainty of the energy scale W is estimated according to the VEPP-4M, which had a characteristic uncertainty of 1.5 keV in the beam energy in the $\psi(2S)$ mass scan (hep-ex/0306050). The uncertainty of W_2 (W_3) is estimated to be $1.5\sqrt{2} = 2.12$ keV, leading to 0.72 (0.35) keV in $\sigma_{m_{\tau}}$.
- 2 $\sigma_{m_{\tau}}$ from energy spread and energy scale are 16 keV and $^{+22}_{-86}$ keV from BESIII (1405.1076), and 25 keV and 40 keV from KEDR (JETP Lett. 85 (2007) 347-352). Take the maximum ratio of 16/22 ~ 0.73, leading to $0.73 \times \sqrt{0.72^2 + 0.35^2} = 0.59$ keV in $\sigma_{m_{\tau}}$.
- **④** By exchanging the NLO correction with the NNLO correction in the calculation of the $e^+e^- \rightarrow X^+Y^- \not\models$ cross sections, which is included in 0.07 keV in σ_{m_τ} due to the theoretical accuracy.

Reduce the uncertainties

The systematic uncertainties $\sigma_{m_{\tau}}$

TABLE IV:	The	systematic	uncertainties	of the m_{τ}	$(\sigma_{m_{\tau}})$	in keV.
		2		•	<	

Sources	$\sigma_{m_{\tau}}/\mathrm{keV}$
Energy scale of W_2	0.72
Energy scale of W_3	0.35
Energy spread δ_W	0.59
Efficiency	0.04
Theory	0.07
Systematic uncertainties	0.99

The systematic uncertainties $\sigma_{m_{\tau}}$, this work VS BESIII 1405.1076

Sources	$\sigma_{m_{-}}/\text{keV}$	Source	$\Delta m_{\tau} \; ({\rm MeV}/c^2)$
	m _T r	Theoretical accuracy	0.010
Energy scale of W_2	0.72	Energy scale	+0.022 -0.086
Energy cools of W	0.25	Energy spread	0.016
Energy scale of W_3	0.55	Luminosity	0.006
Energy spread δ_W	0.59	Cut on number of good photons	0.002
		Cuts on PTEM and acoplanarity angle	0.05
Efficiency	0.04	mis-ID efficiency	0.048
Theory	0.07	Background shape	0.04
	0.07	Fitted efficiency parameter	+0.038 -0.034
Systematic uncertainties	0.99	Total	$+0.094 \\ -0.124$

Reduce the uncertainties

1 Introduction

- 2 The frame of Calculation
- **3** Reduce the uncertainties

・ロト ・日 ・ ・ヨ ・ ・ ヨ ・ うへの

Summary

- We show that the $\tau^+\tau^-$ atom can be observed with a significance larger than 5σ with a 1.5 ab⁻¹ data sample at STCF or SCTF, by measuring the cross section ratio of the processes $e^+e^- \rightarrow X^+Y^-\not\!\!\!\!E$ and $e^+e^- \rightarrow \mu^+\mu^-$.
- 2 With the same data sample, the τ lepton mass can be measured with a precision of 1 keV, a factor of 100 improvement over the existing world best measurements.