

第九届"⼿征有效场论研讨会" 2024年10月18-22日,长沙

手征核力与高密核物质 **的状态方程**

南开大学物理科学学院

11/20/13 19/10/2024 Jinniu Hu ¹

Rutherford scattering NN scattering

固大

J. Bystricky, F. Lehar, and P. Winternitz, J. Phys. 39(1978)1. \mathcal{I} the context of \mathcal{I} one particle (the beam), one particle (the beam), one particle (the beam), \mathcal{I}

03/04/2024 Jinniu Hu with kinetic energy *E*lab, is incident on a stationary particle \bullet the rest frame of the initial proton. In the initial problem of the initial problem of the initial pr

where *d*σ*/d*(is the (unpolarized) differential cross section, J *inniu* Hu

NN scattering data

R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, Phys. Rev. C 89(2014)064006

团大

➢**N2LO chiral potential**

 S. Weinberg, Nuclear Phys. B 363 (1991) 3

- **C. Ordonez, L. Ray, U. van Kolck, Phys. Rev. Lett. 72 (1994) 1982**
- **C. Ordonez, L. Ray, U. van Kolck, Phys. Rev. C 53 (1996) 2086**

J.X. Lu, C.X. Wang, Y. Xiao, L.S. Geng, J. Meng, and P. Ring, Phys. Rev. Lett. 128 (2022) 142002 (Relativistic version)

➢**N3LO chiral potential**

 D. R. Entem, R. Machleidt, Phys. Rev. C 66 (2002) 014002

 E. Epelbaum, W. Gloeckle, U.-G. Meissner, Nucl. Phys. A 747 (2005) 362

➢**N4LO chiral potential and N5LO (partially) D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91 (2015) 014002**

E. Epelbaum, H. Krebs, U.-G. Meissner, Phys. Rev. Lett. 115 (2015) 122301 (EKM) D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96 (2017) 024004 (EMN) P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54 (2018) 86 (RKE) S. K. Saha, D. R. Entem, R. Machleidt, and Y. Nosy, Phys. Rev. C107(2023)034002

Chiral NN interaction 网络剧看剧大学

19/10/2024 Jinniu Hu refer to the vertices of dimension ∆*ⁱ* = 0, ∆*ⁱ* = 1, ∆*ⁱ* = 2, ∆*ⁱ* = 3 and ∆*ⁱ* = 4, respectively.

Jinniu Hu — A similar program is being pursued for in chiral EFT with explicit Δ(1232) DOF

Nuclear force in Chiral EFT Nu Force in Chiral EFT 《翻》 新 2

The pion-exchange part of the NN potential The NN potential with contac<u>t</u> term D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96 (2017) 024004 $V_{\text{LO}} \equiv V^{(0)} = V_{1\pi}^{(0)}$ $\frac{1}{1\pi}$, $V_{\rm NLO} \equiv V^{(2)} = V_{\rm LO} + V_{1\pi}^{(2)} + V_{2\pi}^{(2)}$, $\frac{1}{2\pi}$, $V_{\text{NNLO}} \equiv V^{(3)} = V_{\text{NLO}} + V_{1\pi}^{(3)} + V_{2\pi}^{(3)}$, $V_{\text{N}^3\text{LO}} \equiv V^{(4)} = V_{\text{NNLO}} + V_{1\pi}^{(4)} + V_{2\pi}^{(4)} + V_{3\pi}^{(4)}$ $V_{\rm N^4LO} \equiv V^{(5)} = V_{\rm N^3LO} + V_{1\pi}^{(5)} + V_{2\pi}^{(5)} + V_{3\pi}^{(5)}$ $V_{\text{LO}} \equiv V^{(0)} = V_{1\pi} + V_{\text{ct}}^{(0)}$, $V_{\text{NLO}} \equiv V^{(2)} = V_{\text{LO}} + V_{2\pi}^{(2)} + V_{\text{ct}}^{(2)}$, $V_{\rm NNLO} \equiv V^{(3)} = V_{\rm NLO} + V^{(3)}_{2\pi}$, $\frac{1}{\sqrt{t}}$ range-independent 1PE is $\frac{1}{\sqrt{t}}$ is $\frac{1}{\sqrt{t}}$ is $\frac{1}{\sqrt{t}}$ is $\frac{1}{\sqrt{t}}$ $V_{\rm N^3LO} \equiv V^{(4)} = V_{\rm NNLO} + V_{2\pi}^{(4)} + V_{3\pi}^{(4)} + V_{\rm ct}^{(4)}$ $V_{\rm N^4LO} \equiv V^{(5)} = V_{\rm N^3}$ N_{2i}^3 LO + V_{2i}^3 *f* 2 $V_{\rm N^4LO} \equiv V^{(5)} = V_{\rm N^3LO} + V_{2\pi}^{(5)} + V_{3\pi}^{(5)}$, *q*₂ + *m*² π WE WOO NOT = (σ " $\overline{}$ and *W*^α (α = *C,S,LS,T*) can be expressed as functions of $\frac{1\pi}{2}$ comprehensive discussion of $\frac{1\pi}{2}$ **F. The full potential** T_n $\sum_{i=1}^{n}$ $\sum_{i=1}$ $V_{\rm N^4LO} \equiv V^{(3)} = V_{\rm N^3LO} + V_{1\pi}^{(3)} +$ $\frac{1}{2\pi}$,

19/10/2024 Jinniu Hu

*p*2

where we left out the higher order corrections to the 1PE

Parameters in in chiral EFT **《翻》有图大**.

shift analysis and by the high-precision CD-Bonn potential *versus* the total number of D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96 (2017) 024004

Nuclear force in chiral EFT

 $\overline{}$

 $\triangle V$

· < ^ O *>* ⇤ *•*

E. Epelbaum, H. Krebs, U.-G. Meissner, Phys. Rev. Lett. 115 (2015) 122301 (EKM)

19/10/2024 **Jinniu Hu** fully local potentials up to N2LO **[Gezerlis et al. '14]**; minimally nonlocal N3LO potential including

results at LO, NLO, N²LO, N³LO and N⁴LO, respectively, calculated using the cuto↵ *R* = 0*.*9 fm. Only those partial wave are 1st generation χ N3LO forces (nonlocal) **[Epelbaum-Glöckle-Meißner '04, Entem-Machleidt '03]**

Nuclear force in chiral EFT with the fact that \mathbf{r} is a low-momentum expansion which \mathbf{r} is a low-momentum expansion which which which which \mathbf{r} **indicipal force in chiral CF!** \overline{r}

 $\sum_{k=1}^{\infty}$

 $\overline{\text{u}_i}$ is much the regulator function $\overline{\text{u}_i}$

#) *f* (*p*!

"(*p* 1 *,p*

#) '−→ *V*

 \mathbb{C}^n is during the past \mathbb{Z}

,p) (2.42)

Nuclear force in chiral EFT

P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54 (2018) 86 (RKE) FIG. 8: (Color online) Chiral expansion of the np phase shifts in comparison with the Nijmegen [20] (solid dots) and the GWU

in contemporary many-body nuclear methods), only Weinberg

 \mathbb{R} has been used the past 21 years of the past 25 years of the past

24

19/10/2024 Jinniu Hu dotted and violet long-dashed-dotted lines show the results at LO, NLO, N²LO, N³LO and N⁴LO, respectively, calculated using

10

5

Jinniu Hu [100] (open triangles) np partial wave analysis. Black dotted, orange dashed, green short-dashed-dotted, blue dashed-double-

Nuclear force in chiral EFT

Description of the np and pp phase shifts Description of the nation of the new pp process chiral order 0 200 MeV 1780 90 37 2*.*00 1*.*42 0*.*95 escription of the np and pp phase shifts **the same is a set of the set of the s**

P. Reinert, H. Krebs, EE, EPJA 54 (2018) 88

Deuteron properties a : $\frac{1}{1}$ **2 LECs + 7 + 1 IB LECs + 12 LECs + 1 LEC (np) + 4 LEC** calculated without taking into account meson-exchange current contributions and relativistic corrections. The deuteron binding energy is calculated by solving the relativistic Schr¨odinger equation.

Ξ

 $\frac{1}{\sqrt{2}}$ l, I H. Krebs, and E. Epelt
———————————————————— *M*² ⇡) 1 + $\ddot{}$ I Phys. J. A 54 (2018) 86 (I *M*² I P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54 (2018) 86 (RKE)

Ξ

Ξ

19/10/2024 Jinniu Hu

(*M*phys

Total cross sections

者

19/10/2024 Jinniu Hu $T = 10/1$

The many-body ab initio calculations

➢ **Brueckner-Hartree-Fock method M. Hjorth-Jensen, T.T.S. Kuo, and E. Osens, Phys. Rep. 261(1995)125** ➢ **Relativistic Brueckner-Hartree-Fock method S. Shen, H. Liang, J. Meng, P. Ring, and S. Zhang, Phys. Rev. C 96(2017)014316** ➢ **Self-consistent Green's function method W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52(2004)377** ➢ **Many-body perturbation theory J.W. Holt and N. Kaiser, Phys. Rev. C, 95(2017)034326** ➢ **In-medium Similarity Renormalization Group (IMSRG) H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, Phys. Rep. 621(2016)165** ➢ **No core shell model B. R. Barrett, P. Navraetil, and J. P. Vary, Prog. Part. Nucl. Phys. 69(2013)131** ➢ **Lattice effective field theory D. Lee, Prog. Part. Nucl. Phys. 63(2009)117** ➢ **Quantum Monte Carlo methods**

固大旱

 J. Carlson, S. Gandolfi, F. Pederiva, Steven C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys.87(2015)1067

➢ **Coupled Clusters**

 R. J. Bartlett and M. Musiał. Rev. Mod. Phys.79(2007)291

19/10/2024 Jinniu Hu

 ...

The BHF method the 《剛》有 31 -

In BHF theory of nuclear matter, the realistic *NNI* potential in the realistic *NNI* pote effective **NN** is a construction of the solution of the soluti energies becomes smaller and smaller by including higher perturbation order in chiral *NN* potential. It becomes saturation up $\mathcal I$ **《編》右 31 e e e**_(**a**) + *i* **j j** *j j* $$ *^V* [|]*kakb*!"*kakb*[|] ω − *e*(*ka*) − *e*(*kb*) + *i*# **G**_{*ω*}, (1)

 $\overline{}$

Bethe-Goldstone equation og Goldstone equation **USTONE Equation** where V is a realistic \mathcal{N} is a realistic \mathcal{N} is a realistic \mathcal{N} of \mathcal{N} is a realistic \mathcal{N} is a realistic \mathcal{N}

$$
G[\omega,\rho] = V + \sum_{k_a,k_b > k_F} V \frac{|k_a k_b\rangle\langle k_a k_b|}{\omega - e(k_a) - e(k_b) + i\epsilon} G[\omega,\rho],
$$

ka,*kb*>*kF*

Single-particle energy k energy

$$
e(k) = e(k; \rho) = \frac{k^2}{2m} + U(k, \rho)
$$

Single-particle potential ϵ potential ϵ *U*
United in the present BHF theory is used in the present BHF theory is used in the present BHF theory is used in

$$
U(k; \rho) = \Re \sum_{k' < k_F} \langle kk'|G[e(k) + e(k'); \rho]|kk'\rangle_a,
$$

Energy per nucleon Energy per nucleon Later, this state-of-the-art chiral *NN* potentials were applied on study of few-nucleon systems [28], such as the nucleonw ner nucleon

$$
\frac{E}{A} = \frac{3}{5} \frac{k_F^2}{2m} + \frac{1}{2\rho} \mathfrak{R} \sum_{k,k' < k_F} \langle kk' | G[e(k) + e(k'); \rho] | kk' \rangle_a.
$$

JH, Y. Zhang, E. Epebaum, U.-G. Meissner, and J. Meng, Phys. Rev. C 96(2017)034307 \overline{a} trix elements. These equations are coupled together and solved JH , Y , E. Epebaum, U.-G. Meissner, and J. Meng, Phys. Rev. C 96(2017)034

19/10/2024 Jinniu Hu isted, which should be described by the chiral *NN* potentials. Up to oxygen isotope, the properties of light nuclei were

where the subscript *a* indicates antisymmetrization of the matrix elements. These equations are controlled to the coupled to I_S and solved to I_S and solved to I_S are controlled to I_S and solved to I_S and solved to I_\math plotted for chiral *NN* potentials from LO to N4LO with different coordinate-space cutoffs, *R* = 0.8, 0.9, 1.0, 1.1 and 1.2 fm. **The nuclear matter from chiral potentials**

The EOSs and symmetry energy from N⁴LO chiral potentials

副大

19/10/2024 Jinniu Hu symmetry energy *a*symm (lower row) based on chiral *NN* potentials of [35,36] for all available cutoff values in the range of *R* = 0*.*8–1*.*2 fm.

FIG. 1. Density dependence of the energy per particle of SNM (*E/A*)SNM (upper row), of PNM (*E/A*)PNM (middle row), and of the

Coester Line $\overline{}$

and yields results slightly less repulsive than the DBHF ones

 $\frac{1}{\sqrt{2}}$

 $\overline{}$

The EOSs from different chiral potentials

团大

order EFT coefficients renders explicit in the calculation

An observable X in EFT can be expanded as heenv

$$
X=X_0\sum_{n=1}^{\infty}c_n Q^n,
$$

where X_0 is the natural size of the observable X, and c_n are **dimensionless coefficients.** where *X*⁰ is the natural size of the observable *X*, and {*cn*} $n=0$ are dimensionless coefficients, some of which may be zero.

In nuclear matter, with suitable additional, with suitable additional, with suitable additional, with suitable a In most EFTs the expansion (1) is inherited directly from the expansion (1) is inherited directly from the expansion $\mathcal{L}_\mathcal{F}$

$$
Q=\frac{k_F}{\Lambda_b}
$$

and

$$
X_0 = (E_{\rm LO}/A)
$$

J. A. Melendez, S. Wesolowski, and R. J. Furnstahl, Phys. Rev. C 96(2017)024003 molondoz, o: wooduwer

The Bayesian analysis

The truncated error at order k is

 $\Delta X = X_0 \Delta_k$

where the scaled, dimensionless parameter is

$$
\Delta_k = \sum_{n=k+1}^{\infty} c_n Q^n
$$

In Bayesian framework, one believes with (100*p)% certainty the true value of the observable X lies within $\pm X_0 d_k^{(p)}$

of the (k+1)th order (N^kLO), where d is related to the **degree-of-belief intervals p,**

$$
p = \int_{-d_k^{(p)}}^{d_k^{(p)}} d\Delta \mathrm{pr}_h(\Delta | \mathbf{c_k})
$$

prh **is the posterior probability distribution functions**

The pairing gap in nuclear matter **《 3**

We calculated the properties of nuclear matter with different state-of-the-art chiral NN potentials.

The equations of state of nuclear matter from different chiral potentials have different behaviors due to regularized factor.

The chiral truncation errors in nuclear matter were discussed with Bayesian analysis. The chiral potentials are good convergence at higher order.

They pairing gaps at different spin channels are calculated with chiral force in symmetric matter.

Time-ordered perturbation theory

$$
\begin{pmatrix} \eta H \eta & \eta H \lambda \\ \lambda H \eta & \lambda H \lambda \end{pmatrix} \begin{pmatrix} |\phi \rangle \\ |\psi \rangle \end{pmatrix} = E \begin{pmatrix} |\phi \rangle \\ |\psi \rangle \end{pmatrix} \implies |\psi \rangle = \frac{1}{E - \lambda H \lambda} H |\phi \rangle
$$

$$
\implies (H_0 + V_{\text{eff}}^{\text{TD}}) |\phi \rangle = E |\phi \rangle
$$

with effective potential with the control potential *V* TD is positive potential

$$
V_{\text{eff}}^{\text{TD}} = \eta H_I \eta + \eta H_I \lambda \frac{1}{E - \lambda H \lambda} \lambda H_I \eta
$$

and

$$
|\phi\rangle \equiv |N\rangle + |NN\rangle + |NNN\rangle + \dots
$$

$$
|\psi\rangle \equiv |N\pi\rangle + |N\pi\pi\rangle + \dots + |NN\pi\rangle + \dots
$$

Nuclear force

V TD $\frac{H}{\sqrt{H}}$ λ $\frac{H}{\sqrt{H}}$ + $\frac{H}{\sqrt{H}}$ λ $\frac{H}{\sqrt{H}}$ + *HI*⌘ + ⌘*H^I* $V_{\text{eff}}^{\text{TD}}=\eta H_I\eta+\eta H_I\frac{\lambda}{E-I}$ $E - H_0$ $H_I \eta + \eta H_I \frac{\lambda}{E - \lambda}$ $E - H_0$ $H_I\frac{\lambda}{E-1}$ $E - H_0$ $H_I\eta + \dots$ Nuclear force in chiral EFT

Unitary transformation $\frac{1}{1919}$ (a) $\frac{1}{1919}$ (b) $\frac{1}{1919}$ (b)

$$
H = \begin{pmatrix} \eta H \eta & \eta H \lambda \\ \lambda H \eta & \lambda H \lambda \end{pmatrix} \Longrightarrow \tilde{H} \equiv U^{\dagger} H U = \begin{pmatrix} \eta \tilde{H} \eta & 0 \\ 0 & \lambda \tilde{H} \lambda \end{pmatrix}
$$

 $\overline{\mathbf{D}}$

周大学

and

$$
U = \begin{pmatrix} \eta (1 + A^\dagger A)^{-1/2} & - A^\dagger (1 + A^\dagger A)^{-1/2} \\ A (1 + A^\dagger A)^{-1/2} & \lambda (1 + A^\dagger A)^{-1/2} \end{pmatrix}
$$

A should be solved by **A** should be solved by

$$
\lambda(H-[A,H]-AHA)\eta=0
$$

Nuclear force
 $V_{\text{eff}} = -\eta H_I \frac{\lambda}{E_{\pi}} H_I \eta - \eta H_I \frac{\lambda}{E_{\pi}} H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{E_{\pi}} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_{\pi}^2} H_I \eta + \cdots$

A-nucleon interactions receives contributions $\left(\bigcap A\right)$ ^V power of an involvement $\mathsf{\small{I}}$ **Paractions receives contributions**
 $(\bigcirc/\Lambda_{\mathsf{\tiny S}})^\nu$ D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96 (2017) 024004
In interactions receives contributions

 $(Q/\Lambda_\chi)^\nu$ $\langle \begin{array}{cc} \mathbf{0} & \mathbf{1} \end{array} \rangle$

Weinberg power counting for N-nucleon α convertise for \mathbb{R} must be α Power counting for it neered

state (hadronic scale). Determining the power n_i $\nu = -2 + 2A - 2C + 2L + \sum_{i} \Delta_i, \ \ \Delta_i \equiv d_i + \frac{n_i}{2} - 2$ $-2C+2L+\sum \Delta_i$, $\Delta_i = d_i + \frac{n_i}{2} - 2$ $\frac{a}{2}$ - 2

- A: number of nucleon fields (in and out-states) *i* of nucleon fields (*in and our-sidies)*
(*chinally individual* connected multi-nucleon forces. Consider a $\frac{7}{10}$ connected diagram is $\frac{2}{10}$
- **L: number of pion loops** imber of pion loops
n
- C: number of connected pieces connected parts of the diagram while *L* is the number of loops; *dⁱ* indicates how
- V_i : **: number of vertices with vertex dimension** nucleon connected pieces.
The Feynman rules of covariant person rules of covariant person theory, a nucleon theory, a nucleon theory, a **V**_i: number of vertices with vertex dimension
In the two equations above: for each vertex **i**, *c* represents the number of individual matrices with vertex dimension **number of vertices** with vertex dimension
- d_i : **: number of derivatives or pion mass at the vertex i** interaction is *Q*, and each four-momentum integration *Q*⁴. This is also known as naive d: number of derivatives or pion mass at the vertex i n of denivatives on nion mass at the ventey i For later purposes, we note that for an irreducible *NN* diagram (*A* = 2, *C* = 1),
- n_i : **: number of nucleon fields at the vertex i** dimpersional dimensional and the verties. The topological identities, one obtains for the theory of the theory n_i : number of nucleon fields at the vertex i

 $p = 2L + \sum_i \Delta_i$

NN interaction:
$$
v = 2L + \sum_{i} \Delta_i
$$

19/10/2024 Jinniu Hu (*d*₁₉/10/2024 **between pions and a nucleon pions and a nucleon pions and a nucleon pions and a nucleon have one or more or**

Power counting P_{oucon} counting: P_{oucon}

