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For the noninformative set Cε , where c̄< → 0
and c̄> → ∞, Eq. (A9) simplifies to a t-distribution:
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Rather than integrating Eq. (A11), d
(p)
k can be found by

numerically solving the transcendental equation
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where 2F1 is the hypergeometric function.

APPENDIX B: DETAILS ON NN OBSERVABLES

For convenience of the reader and because of the multitude
of different conventions in the literature, we have gathered in
this Appendix the formulas used here in the calculation of NN
observables [15,33,42–46].

1. Kinematics

In the context of NN scattering, one particle (the beam),
with kinetic energy Elab, is incident on a stationary particle
(the target). For np scattering, the laboratory system (l.s.) is
often taken to be the rest frame of the initial proton. In the
center-of-momentum (c.m.) system, each particle has a relative
momentum of prel. It is convenient to relate these quantities
for each NN experiment:

proton-proton: p2
rel = 1

2
MpElab, (B1)

neutron-neutron: p2
rel = 1

2
MnElab, (B2)

neutron-proton: p2
rel =

ElabM
2
p(Elab + 2Mn)

(Mp + Mn)2 + 2MpElab
, (B3)

where relativistic kinematics is used [20]. Unless otherwise
stated, θ is the c.m. polar scattering angle while φ denotes
the azimuthal scattering angle. For our purposes, φ can be set
to zero because all observables can be defined relative to the
scattering plane.

The spin states of the initial and final states can be expressed
in the uncoupled basis |i〉spin = |m′

1m
′
2〉 and |f 〉spin = |m1m2〉,

respectively, where we have suppressed s1 = s2 = 1/2. We can
also use the coupled singlet-triplet basis, where |i〉spin = |s ′m′〉
and |f 〉spin = |sm〉.

2. Observables

Because nucleons have nonzero intrinsic spin, observables
in general are dependent not only on kinematic variables
(Elab,θ,φ), but also on the relative orientation of the particles’
spin. A generic spin observable can be written as

dσ

d(
Xpqik = 1

4
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FIG. 28. The kinematics for nucleon-nucleon scattering [43].

where dσ/d( is the (unpolarized) differential cross section,
M(kf ,ki) is the spin-scattering matrix and σv = σ · v. The
subscripts p, q, i, and k refer to the polarization directions of
the scattered, recoil, beam, and target particles, respectively. If
a final-state subscript is zero, its polarization is not analyzed.
If a initial-state subscript is zero, the corresponding particle
was unpolarized.

When an observable is considered in the c.m. system, the
polarization of each particle is often decomposed in a common
basis using the unit vectors ", m, n defined as

" =
(
sin θ

2 cos φ, sin θ
2 sin φ, cos θ

2

)
, (B5)

m =
(
cos θ

2 cos φ, cos θ
2 sin φ, − sin θ

2

)
, (B6)

n = (− sin φ, cos φ, 0), (B7)

and shown in Fig. 28. Here we consider pure experiments,
where the spin projections are solely along the basis vectors.
Hence, for a c.m. observable, the subscripts p, q, i, and k are
some combination of ), m, n, and 0.

It is often convenient to express spin observables in the
l.s., where the scattered and recoil particles deflect at angles
θ1 and θ2, respectively. Lab system observables often use
three sets of bases to define spin observables, defined by
the beam, scattered, and recoil particle directions. The beam
(scattered, recoil) frame aligns k (k′, k′′) with the laboratory
particle momentum and defines n (= n′ = n′′) to be normal
to the scattering plane, which leaves s (s′, s′′) in the scattering
plane such that s = n × k (s′ = n × k′, s′′ = n × k′′). The
initial-state subscripts i and k are then chosen to be k, s, n,
or 0. Similarly, the scattered-state subscript p is k′, s ′, n or 0,
and the recoil-state subscript q is k′′, s ′′, n or 0.
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Chiral NN interaction  Chiral expansion of the nuclear forces [W-counting]

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|!p |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4
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still have to be worked out

[parameter-free] [parameter-free]

— Much more involved than just calculating Feynman diagrams…
— A similar program is being pursued for in chiral EFT with explicit Δ(1232) DOF

From E. E. Epelbaum
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Nuclear force in Chiral EFT 

The pion-exchange part of the NN potential 

The NN potential with contact term 

D. R. ENTEM, R. MACHLEIDT, AND Y. NOSYK PHYSICAL REVIEW C 96, 024004 (2017)

TABLE I. Basic constants used throughout this work [56].

Quantity Value

Axial-vector coupling constant gA 1.29
Pion-decay constant fπ 92.4 MeV
Charged-pion mass mπ± 139.5702 MeV
Neutral-pion mass mπ0 134.9766 MeV
Average pion-mass m̄π 138.0390 MeV
Proton mass Mp 938.2720 MeV
Neutron mass Mn 939.5654 MeV
Average nucleon-mass M̄N 938.9183 MeV

above terms, we have a low-momentum expansion:

V1π = V
(0)

1π + V
(2)

1π + V
(3)

1π + V
(4)

1π + V
(5)

1π + · · · , (2.9)

V2π = V
(2)

2π + V
(3)

2π + V
(4)

2π + V
(5)

2π + · · · , (2.10)

V3π = V
(4)

3π + V
(5)

3π + · · · , (2.11)

where the superscript denotes the order ν of the expansion.
Order by order, the long-range NN potential builds up as

follows:
VLO ≡ V (0) = V

(0)
1π , (2.12)

VNLO ≡ V (2) = VLO + V
(2)

1π + V
(2)

2π , (2.13)

VNNLO ≡ V (3) = VNLO + V
(3)

1π + V
(3)

2π , (2.14)

VN3LO ≡ V (4) = VNNLO + V
(4)

1π + V
(4)

2π + V
(4)

3π , (2.15)

VN4LO ≡ V (5) = VN3LO + V
(5)

1π + V
(5)

2π + V
(5)

3π , (2.16)

where LO stands for leading order, NLO stands for next-to-
leading order, etc.

1. Leading order

At leading order, only one-pion exchange (1PE) contributes
to the long range; cf. Fig. 1. The charge-independent 1PE is
given by

V
(CI)

1π ( "p′, "p) = − g2
A

4f 2
π

τ 1 · τ 2
"σ1 · "q "σ2 · "q
q2 + m2

π

, (2.17)

where "p ′ and "p denote the final and initial nucleon momenta in
the center-of-mass system, respectively. Moreover, "q = "p ′ −
"p is the momentum transfer, and "σ1,2 and τ 1,2 are the spin and
isospin operators of nucleons 1 and 2, respectively. Parameters
gA, fπ , and mπ denote the axial-vector coupling constant,
pion-decay constant, and the pion mass, respectively. See
Table I for their values. Higher order corrections to the 1PE are
taken care of by mass and coupling constant renormalizations.
Note also that, on shell, there are no relativistic corrections.
Thus, we apply 1PE in the form Eq. (2.17) through all orders.

For the NN potentials constructed in this paper, we take
the charge dependence of the 1PE due to pion-mass splitting
into account. Thus, in proton-proton (pp) and neutron-neutron
(nn) scattering, we actually use

V
(pp)

1π ( "p′, "p) = V
(nn)

1π ( "p′, "p) = V1π (mπ0 ) , (2.18)

and in neutron-proton (np) scattering, we apply

V
(np)

1π ( "p′, "p) = −V1π (mπ0 ) + (−1)I+1 2 V1π (mπ±) , (2.19)

where I = 0,1 denotes the total isospin of the two-nucleon
system and

V1π (mπ ) ≡ − g2
A

4f 2
π

"σ1 · "q "σ2 · "q
q2 + m2

π

. (2.20)

Formally speaking, the charge dependence of the 1PE ex-
change is of order NLO [1], but we include it also at leading
order to make the comparison with the (charge-dependent)
phase-shift analyses meaningful.

2. Subleading pion exchanges

Two-pion exchange starts at NLO and continues through
all higher orders. In Fig. 1, the corresponding diagrams show
completely up to NNLO. Beyond that order, the number of
diagrams increases so dramatically that we show only a few
symbolic graphs. The situation is similar for the 3PE contri-
butions, which start at N3LO. Also the mathematical formulas
are getting increasingly involved. A complete collection of all
formulas concerning the 2PE and 3PE contributions through
all orders from NLO to N4LO is given in Ref. [52]. Therefore,
we will not reprint the complicated math here and refer the
interested reader to the comprehensive compendium [52].
In all 2PE and 3PE contributions, we use the average pion
mass, m̄π = 138.039 MeV. The charge dependence caused by
pion-mass splitting in 2PE has been found to be negligible
in all partial waves with L > 0 [57]. The small effect in 1S0
is absorbed into the charge dependence of the zeroth-order
contact parameter C̃1S0 ; see below.

The contributions have the following general decomposi-
tion:

V ( "p′, "p) = VC + τ 1 · τ 2 WC

+ [VS + τ 1 · τ 2 WS] "σ1 · "σ2

+ [VLS + τ 1 · τ 2 WLS] [−i "S · ("q × "k)]

+ [VT + τ 1 · τ 2 WT ] "σ1 · "q "σ2 · "q, (2.21)

where "k = ( "p ′ + "p)/2 denotes the average momentum and
"S = ("σ1 + "σ2)/2 is the total spin. For on-shell scattering, Vα

and Wα (α = C,S,LS,T ) can be expressed as functions of
q = |"q |.

We consider loop contributions in terms of their spectral
functions, from which the momentum-space amplitudes Vα(q)
and Wα(q) are obtained via the subtracted dispersion integrals:

VC,S(q) = −2q6

π

∫ %̃

nmπ

dµ
Im VC,S(iµ)
µ5(µ2 + q2)

,

VT,LS(q) = 2q4

π

∫ %̃

nmπ

dµ
Im VT,LS(iµ)
µ3(µ2 + q2)

, (2.22)

and similarly for WC,S,T ,LS . The thresholds are given by n = 2
for two-pion exchange and n = 3 for three-pion exchange.
For %̃ → ∞ the above dispersion integrals yield the results
of dimensional regularization, while for finite %̃ ! nmπ we
employ the method known as spectral-function regularization
(SFR) [58]. The purpose of the finite scale %̃ is to constrain
the imaginary parts to the low-momentum region where chiral
effective field theory is applicable. Thus, a reasonable choice
for %̃ is to keep it below the masses of the vector mesons
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The fourth-order (N3LO) contacts are

V
(4)

ct ( !p′, !p)

= D1 q4 + D2 k4 + D3 q2k2 + D4 (!q × !k)2

+ [D5 q4 + D6 k4 + D7 q2k2 + D8 (!q × !k)2]!σ1 · !σ2

+ (D9 q2 + D10 k2)[−i !S · (!q × !k)]

+ (D11 q2 + D12 k2)(!σ1 · !q) (!σ2 · !q)

+ (D13 q2 + D14 k2)(!σ1 · !k) (!σ2 · !k)

+D15[!σ1 · (!q × !k) !σ2 · (!q × !k)] , (2.29)

with contributions by partial waves,

V
(4)

ct (1S0) = D̂1S0 (p′4 + p4) + D1S0p
′2p2,

V
(4)

ct (3P0) = D3P0 (p′3p + p′p3),

V
(4)

ct (1P1) = D1P1 (p′3p + p′p3),

V
(4)

ct (3P1) = D3P1 (p′3p + p′p3),

V
(4)

ct (3S1) = D̂3S1 (p′4 + p4) + D3S1p
′2p2,

V
(4)

ct (3D1) = D3D1p
′2p2,

V
(4)

ct (3S1 − 3D1) = D̂3S1−3D1p
4 + D3S1−3D1p

′2p2,

V
(4)

ct (3D1 − 3S1) = D̂3S1−3D1p
′4 + D3S1−3D1p

′2p2,

V
(4)

ct (1D2) = D1D2p
′2p2,

V
(4)

ct (3D2) = D3D2p
′2p2,

V
(4)

ct (3P2) = D3P2 (p′3p + p′p3),

V
(4)

ct (3P2 − 3F2) = D3P2−3F2p
′p3,

V
(4)

ct (3F2 − 3P2) = D3P2−3F2p
′3p,

V
(4)

ct (3D3) = D3D3p
′2p2 . (2.30)

Reference [1] provides formulas that relate D(2S+1)LJ
to Di .

The next higher order is sixth order (N5LO) at which,
finally, F waves are also affected in the following way:

V
(6)

ct (3F2) = E3F2p
′3p3,

V
(6)

ct (1F3) = E1F3p
′3p3,

V
(6)

ct (3F3) = E3F3p
′3p3,

V
(6)

ct (3F4) = E3F4p
′3p3 . (2.31)

To obtain an optimal fit of the NN data at the highest order we
consider in this paper, we include the above F -wave contacts
in our N4LO potentials.

E. Charge dependence

This is to summarize what charge dependence we include.
Through all orders, we take the charge dependence of the 1PE
due to pion-mass splitting into account, Eqs. (2.18) and (2.19).
Charge dependence is seen most prominently in the 1S0 state
at low energies, particularly in the 1S0 scattering lengths. The
charge-dependent 1PE cannot explain it all. The remainder
is accounted for by treating the 1S0 LO contact parameter,

C̃1S0 , Eq. (2.25), in a charge-dependent way. Thus, we will
distinguish among C̃

pp
1S0

, C̃np
1S0

, and C̃nn
1S0

. For pp scattering at any
order, we include the relativistic Coulomb potential [61,62].
Finally, at N3LO and N4LO, we take into account irreducible
π -γ exchange [63], which affects only the np potential. We
also take nucleon-mass splitting into account, or in other
words, we always apply the correct values for the masses
of the nucleons involved in the various charge-dependent NN
potentials.

For a comprehensive discussion of all possible sources for
the charge dependence of the NN interaction, see Ref. [1].

F. The full potential

The sum of long-range [Eqs. (2.12)–(2.16)] plus short-
range potentials [Eq. (2.23)] results in

VLO ≡ V (0) = V1π + V
(0)

ct , (2.32)

VNLO ≡ V (2) = VLO + V
(2)

2π + V
(2)

ct , (2.33)

VNNLO ≡ V (3) = VNLO + V
(3)

2π , (2.34)

VN3LO ≡ V (4) = VNNLO + V
(4)

2π + V
(4)

3π + V
(4)

ct , (2.35)

VN4LO ≡ V (5) = VN3LO + V
(5)

2π + V
(5)

3π , (2.36)

where we left out the higher order corrections to the 1PE
because, as discussed, they are absorbed by mass and coupling
constant renormalizations. It is also understood that the charge
dependence discussed in the previous subsection is included.

In our systematic potential construction, we follow the
above scheme, except for two physically motivated modifica-
tions. We add to VN3LO the 1/MN correction of the NNLO 2PE
proportional to ci . This correction is proportional to ci/MN and
appears nominally at fifth order, because we count Q/MN ∼
(Q/$χ )2. This contribution is given in Eqs. (2.19)–(2.23) of
Ref. [52] and we denote it by V

(5)
2π,ci/MN

. In short, in Eq. (2.35),
we replace

VN3LO '−→ VN3LO + V
(5)

2π,ci/MN
. (2.37)

As demonstrated in Ref. [15], the 2PE bubble diagram
proportional to c2

i that appears at N3LO is unrealistically
attractive, while the ci/MN correction is large and repulsive.
Therefore, it makes sense to group these diagrams together to
arrive at a more realistic intermediate attraction at N3LO.

The second modification consists of adding to VN4LO the
four F -wave contacts listed in Eq. (2.31) to ensure an optimal
fit of the NN data for the potential of the highest order
constructed in this work.

The potential V is, in principal, an invariant amplitude (with
relativity taken into account perturbatively) and thus satisfies
a relativistic scattering equation, like, e.g., the Blankenbeclar-
Sugar (BbS) equation [64], which reads explicitly

T ( !p′, !p) = V ( !p′, !p) +
∫

d3p′′

(2π )3
V ( !p′, !p′′)

M2
N

Ep′′

× 1

p2 − p′′2 + iε
T ( !p′′, !p) (2.38)
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Table 4. Number of parameters needed for fitting the np data in the Nijmegen phase-
shift analysis and by the high-precision CD-Bonn potential versus the total number of
NN contact terms of EFT based potentials to di↵erent orders.

Nijmegen PWA93 CD-Bonn pot. — EFT contact potentials [33] —

Ref [47] Ref. [44] Q
0

Q
2

Q
4

Q
6

1
S0 3 4 1 2 4 6

3
S1 3 4 1 2 4 6

3
S1-3D1 2 2 0 1 3 6
1
P1 3 3 0 1 2 4

3
P0 3 2 0 1 2 4

3
P1 2 2 0 1 2 4

3
P2 3 3 0 1 2 4

3
P2-3F2 2 1 0 0 1 3
1
D2 2 3 0 0 1 2

3
D1 2 1 0 0 1 2

3
D2 2 2 0 0 1 2

3
D3 1 2 0 0 1 2

3
D3-3G3 1 0 0 0 0 1
1
F3 1 1 0 0 0 1

3
F2 1 2 0 0 0 1

3
F3 1 2 0 0 0 1

3
F4 2 1 0 0 0 1

3
F4-3H4 0 0 0 0 0 0
1
G4 1 0 0 0 0 0

3
G3 0 1 0 0 0 0

3
G4 0 1 0 0 0 0

3
G5 0 1 0 0 0 0

Total 35 38 2 9 24 50

of Q participate in a given NN state. One can see from the Table that contacts appear

for the first time in D-waves at N3LO. This is one important mechanism behind the

considerable improvement in the reproduction of the NN data at this order. Because

the D-states are somewhat in between central and peripheral waves, contact terms, in

addition to the one- and two-pion exchanges, are important to describe the D-phases

correctly. Moreover, at N3LO, every P -wave also benefits from an additional contact

term, leading to further improvement, especially in 3
P0 and 3

P1 at incident laboratory

energies greater than 100 MeV (cf. Fig. 15).

Table 4 also displays the number of free parameters used in the Nijmegen partial

wave analysis (PWA93) [47] and in the high-precision CD-Bonn potential [44]. For S and

D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96 (2017) 024004
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3

TABLE III: �2/datum for the description of the Nijmegen neutron-proton and proton-proton phase shifts [25] as described in
the text at di↵erent orders in the chiral expansion for the cuto↵ R = 0.9 fm. Only those channels are included which have been
used in the N3LO/N4LO fits, namely the S-, P- and D-waves and the mixing angles ✏1 and ✏2.

Elab bin LO NLO N2LO N3LO N4LO

neutron-proton phase shifts

0–100 360 31 4.5 0.7 0.3

0–200 480 63 21 0.7 0.3

proton-proton phase shifts

0–100 5750 102 15 0.8 0.3

0–200 9150 560 130 0.7 0.6
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FIG. 1: Chiral expansion of the NN phase shifts in comparison with the NPWA [25] (solid dots) and the GWU single-energy
np partial wave analysis [58] (open triangles). Dotted, dashed, dashed-dotted, dashed-double-dotted and solid lines show the
results at LO, NLO, N2LO, N3LO and N4LO, respectively, calculated using the cuto↵ R = 0.9 fm. Only those partial wave are
shown which have been used in the fits at N3LO/N4LO.

 NN phase shifts order by order [R = 0.9 fm]
EE, Krebs, Meißner, EPJ A51 (2015) 5, 53;  PRL 115 (2015) 122301

1st generation χ N3LO forces (nonlocal) [Epelbaum-Glöckle-Meißner ’04, Entem-Machleidt ’03]

Other chiral NN potentials on the market:

fully local potentials up to N2LO [Gezerlis et al. ’14]; minimally nonlocal N3LO potential including 
N2LO Δ(1232) contributions [Piarulli et al.’15]

N2LO potentials by the Oak Ridge group tuned to heavier nuclei [Ekström, Carlsson et al.]
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NN FORCES to FOURTH ORDER
Epelbaum, Krebs, UGM, Eur. Phys. J. A 51: 53 (2015)

• new regularization of long-range physics [coordinate space cut-off]:

V reg

long�range
(~r ) = Vlong�range(~r )freg
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◆
, freg =

h
1 � exp

⇣
� r

2

R2

⌘i6

=) No distortion of the long-range potential ! better at higher energies

=) No additional spectral function regularization in the TPEP required

=) Study of the chiral expansion of multi-pion exchanges: R = 0.8 · · · 1.2 fm
Baru et al., EPJ A48 (12) 69

• new way of estimation the theoretical uncertainty [before: only cut-off variations]

=) Expansion parameter depending on the region: Q = max

✓
M⇡

⇤b

,
p

⇤b

◆

=) Breakdown scale ⇤b = 600MeV for R = 0.8 · · · 1.0 fm

Strong Interactions – Ulf-G. Meißner – Lectures, Fourth Summer School on High Energy Physics and Quantum Field Theory 2016, Yerevan, Armenia, August 2016

· � � < ^ O > ⇤ •

E. Epelbaum, H. Krebs, U.-G. Meissner, Phys. Rev. Lett. 115 (2015) 122301 (EKM)
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FIG. 2. Chiral expansion of neutron-proton scattering as represented by the phase shifts in S, P , and D waves and mixing parameters
ε1 and ε2. Five orders ranging from LO to N4LO are shown as denoted. A cutoff " = 500 MeV is applied in all cases. The filled and open
circles represent the results from the Nijmegen multienergy np phase-shift analysis [80] and the GWU single-energy np analysis SP07 [102],
respectively.

Our fit procedures differ also substantially from the ones
used in the recent chiral NN potential constructions of
Refs. [23,24], where the potentials are fitted to phase shifts.
Already in the early 1990s, the Nijmegen group has pointed
out repeatedly and demonstrated clearly [96] that fitting to
experimental data should be preferred over fitting to phase
shifts, because a seemingly good fit to phase shifts can result
in a bad reproduction of the data. Note that phase shifts are not
experimental data.

C. Results for NN scattering

The χ2/datum for the reproduction of the NN data at various
orders of chiral EFT are shown in Table V for different energy
intervals below 290 MeV laboratory energy (Tlab). The bottom
line of Table V summarizes the essential results. For the close
to 5000 pp plus np data below 290 MeV (pion-production
threshold), the χ2/datum is 51.4 at NLO and 6.3 at NNLO.
Note that the number of NN contact terms is the same for
both orders. The improvement is entirely due to an improved
description of the 2PE contribution, which is responsible for
the crucial intermediate-range attraction of the nuclear force.
At NLO, only the uncorrelated 2PE is taken into account,
which is insufficient. From the classic meson-theory of nuclear
forces [101], it is well known that π -π correlations and nucleon

resonances need to be taken into account for a realistic model
of 2PE that provides a sufficient amount of intermediate
attraction to properly bind nucleons in nuclei. In the chiral
theory, these contributions are encoded in the subleading πN
vertexes with LECs denoted by ci . These enter at NNLO and
are the reason for the substantial improvements we encounter
at that order. This is the best proof that, starting at NNLO, the
chiral approach to nuclear forces is getting the physics right.

To continue on the bottom line of Table V, after NNLO, the
χ2/datum then further improves to 1.63 at N3LO and, finally,
reaches the almost perfect value of 1.15 at N4LO—a fantastic
convergence.

Corresponding np phase shifts are displayed in Fig. 2,
which reflect what the χ2 have already proven, namely, an
excellent convergence when going from NNLO to N3LO and,
finally, to N4LO. However, at LO and NLO there are large
discrepancies between the predictions and the empirical phase
shifts as to be expected from the corresponding χ2 values.
This fact renders applications of the LO and NLO nuclear
force useless for any realistic calculation (but they could be
used to demonstrate truncation errors).

For order N4LO (with " = 500 MeV), we also provide
the numerical values for the phase shifts in the appendix.
Our pp phase shifts are the phase shifts of the nuclear plus
relativistic Coulomb interaction with respect to Coulomb
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with Ep′′ ≡
√

M2
N + p′′2 and MN being the nucleon mass.

The advantage of using a relativistic scattering equation is that
it automatically includes relativistic kinematical corrections
to all orders. Thus, in the scattering equation, no propagator
modifications are necessary when moving up to higher orders.

Defining

V̂ ( #p′, #p) ≡ 1
(2π )3

√
MN

Ep′
V ( #p′, #p)

√
MN

Ep

(2.39)

and

T̂ ( #p′, #p) ≡ 1
(2π )3

√
MN

Ep′
T ( #p′, #p)

√
MN

Ep

, (2.40)

where the factor 1/(2π )3 is added for convenience, the BbS
equation collapses into the usual, nonrelativistic Lippmann-
Schwinger (LS) equation,

T̂ ( #p′, #p) = V̂ ( #p′, #p) +
∫

d3p′′ V̂ ( #p′, #p′′)

× MN

p2 − p′′2 + iε
T̂ ( #p′′, #p) . (2.41)

Since V̂ satisfies Eq. (2.41), it may be regarded as a nonrela-
tivistic potential. By the same token, T̂ may be considered as
the nonrelativistic T matrix. All technical aspects associated
with the solution of the LS equation can be found in
Appendix A of Ref. [65], including specific formulas for the
calculation of the np and pp phase shifts (with Coulomb).
Additional details concerning the relevant operators and their
decompositions are given in Sec. 4 of Ref. [66]. Finally,
computational methods to solve the LS equation are found
in Ref. [67].

G. Regularization and nonperturbative renormalization

Iteration of V̂ in the LS equation, Eq. (2.41), requires cutting
V̂ off for high momenta to avoid infinities. This is consistent
with the fact that ChPT is a low-momentum expansion which
is valid only for momenta Q < #χ ≈ 1 GeV. Therefore, the
potential V̂ is multiplied with the regulator function f (p′,p),

V̂ ( #p′, #p) '−→ V̂ ( #p′, #p) f (p′,p) (2.42)

with

f (p′,p) = exp[−(p′/#)2n − (p/#)2n] , (2.43)

such that

V̂ ( #p′, #p) f (p′,p)

≈ V̂ ( #p′, #p)
{

1 −
[(

p′

#

)2n

+
(

p

#

)2n]
+ · · ·

}
. (2.44)

For the cutoff parameter #, we apply three different values,
namely, 450, 500, and 550 MeV.

Equation (2.44) provides an indication of the fact that the
exponential cutoff does not necessarily affect the given order
at which the calculation is conducted. For sufficiently large
n, the regulator introduces contributions that are beyond the
given order. Assuming a good rate of convergence of the chiral

expansion, such orders are small as compared to the given order
and thus do not affect the accuracy at the given order. Thus,
we use n = 2 for 3PE and 2PE and n = 4 for 1PE (except in
LO and NLO, where we use n = 2 for 1PE). For contacts of
order ν, n is chosen such that 2n > ν.

In our calculations, we apply, of course, the exponential
form, Eq. (2.43), and not the expansion, Eq. (2.44). On a
similar note, we also do not expand the square-root factors
in Eqs. (2.39) and (2.40) because they are kinematical factors
which guarantee relativistic elastic unitarity.

It is pretty obvious that results for the T matrix may
depend sensitively on the regulator and its cutoff parameter.
The removal of such regulator dependence is known as
renormalization.

The renormalization of the perturbatively calculated NN
potential is not a problem. The problem is nonperturbative
renormalization. This problem typically occurs in nuclear
EFT because nuclear physics is characterized by bound states
and large scattering lengths, which are nonperturbative in
nature. Or in other words, to obtain the nuclear amplitude,
the potential has to be resummed (to infinite orders) in the LS
equation, Eq. (2.41). EFT power counting may be different for
nonperturbative processes as compared to perturbative ones.
Such difference may be caused by the infrared enhancement
of the reducible diagrams generated in the LS equation.

Weinberg’s implicit assumption [5] was that the countert-
erms introduced to renormalize the perturbatively calculated
potential, based upon naive dimensional analysis (“Weinberg
counting,” cf. Sec. II B), are also sufficient to renormalize
the nonperturbative resummation of the potential in the LS
equation.

Weinberg’s assumption may not be correct as first pointed
out by Kaplan et al. [68], and we refer the interested reader to
Sec. 4.5 of Ref. [1] for a comprehensive discussion of the issue.
Even today, no generally accepted solution to this problem
has emerged and some more recent proposals can be found in
Refs. [69–76]. Concerning the construction of quantitative NN
potential (by which we mean NN potentials suitable for use
in contemporary many-body nuclear methods), only Weinberg
counting has been used with success during the past 25 years
[1,6,17,21,23,26], which is why also in the present work we
will apply Weinberg counting.

In spite of the criticism, Weinberg counting may be
perceived as not unreasonable by the following argument. For
a successful EFT (in its domain of validity), one must be able to
claim independence of the predictions on the regulator within
the theoretical error. Also, truncation errors must decrease as
we go to higher and higher orders. These are precisely the
goals of renormalization.

Lepage [77] has stressed that the cutoff independence
should be examined for cutoffs below the hard scale and not
beyond. Ranges of cutoff independence within the theoretical
error are to be identified using Lepage plots [77]. A systematic
investigation of this kind has been conducted in Ref. [78].
In that work, the error of the predictions was quantified by
calculating the χ2/datum for the reproduction of the np elastic
scattering data as a function of the cutoff parameter # of
the regulator function Eq. (2.43). Predictions by chiral np
potentials at order NLO and NNLO were investigated applying
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with Ep′′ ≡
√

M2
N + p′′2 and MN being the nucleon mass.

The advantage of using a relativistic scattering equation is that
it automatically includes relativistic kinematical corrections
to all orders. Thus, in the scattering equation, no propagator
modifications are necessary when moving up to higher orders.

Defining

V̂ ( #p′, #p) ≡ 1
(2π )3

√
MN

Ep′
V ( #p′, #p)

√
MN

Ep

(2.39)

and

T̂ ( #p′, #p) ≡ 1
(2π )3

√
MN

Ep′
T ( #p′, #p)

√
MN

Ep

, (2.40)

where the factor 1/(2π )3 is added for convenience, the BbS
equation collapses into the usual, nonrelativistic Lippmann-
Schwinger (LS) equation,

T̂ ( #p′, #p) = V̂ ( #p′, #p) +
∫

d3p′′ V̂ ( #p′, #p′′)

× MN

p2 − p′′2 + iε
T̂ ( #p′′, #p) . (2.41)

Since V̂ satisfies Eq. (2.41), it may be regarded as a nonrela-
tivistic potential. By the same token, T̂ may be considered as
the nonrelativistic T matrix. All technical aspects associated
with the solution of the LS equation can be found in
Appendix A of Ref. [65], including specific formulas for the
calculation of the np and pp phase shifts (with Coulomb).
Additional details concerning the relevant operators and their
decompositions are given in Sec. 4 of Ref. [66]. Finally,
computational methods to solve the LS equation are found
in Ref. [67].

G. Regularization and nonperturbative renormalization

Iteration of V̂ in the LS equation, Eq. (2.41), requires cutting
V̂ off for high momenta to avoid infinities. This is consistent
with the fact that ChPT is a low-momentum expansion which
is valid only for momenta Q < #χ ≈ 1 GeV. Therefore, the
potential V̂ is multiplied with the regulator function f (p′,p),

V̂ ( #p′, #p) '−→ V̂ ( #p′, #p) f (p′,p) (2.42)

with

f (p′,p) = exp[−(p′/#)2n − (p/#)2n] , (2.43)

such that

V̂ ( #p′, #p) f (p′,p)

≈ V̂ ( #p′, #p)
{

1 −
[(

p′

#

)2n

+
(

p

#

)2n]
+ · · ·

}
. (2.44)

For the cutoff parameter #, we apply three different values,
namely, 450, 500, and 550 MeV.

Equation (2.44) provides an indication of the fact that the
exponential cutoff does not necessarily affect the given order
at which the calculation is conducted. For sufficiently large
n, the regulator introduces contributions that are beyond the
given order. Assuming a good rate of convergence of the chiral

expansion, such orders are small as compared to the given order
and thus do not affect the accuracy at the given order. Thus,
we use n = 2 for 3PE and 2PE and n = 4 for 1PE (except in
LO and NLO, where we use n = 2 for 1PE). For contacts of
order ν, n is chosen such that 2n > ν.

In our calculations, we apply, of course, the exponential
form, Eq. (2.43), and not the expansion, Eq. (2.44). On a
similar note, we also do not expand the square-root factors
in Eqs. (2.39) and (2.40) because they are kinematical factors
which guarantee relativistic elastic unitarity.

It is pretty obvious that results for the T matrix may
depend sensitively on the regulator and its cutoff parameter.
The removal of such regulator dependence is known as
renormalization.

The renormalization of the perturbatively calculated NN
potential is not a problem. The problem is nonperturbative
renormalization. This problem typically occurs in nuclear
EFT because nuclear physics is characterized by bound states
and large scattering lengths, which are nonperturbative in
nature. Or in other words, to obtain the nuclear amplitude,
the potential has to be resummed (to infinite orders) in the LS
equation, Eq. (2.41). EFT power counting may be different for
nonperturbative processes as compared to perturbative ones.
Such difference may be caused by the infrared enhancement
of the reducible diagrams generated in the LS equation.

Weinberg’s implicit assumption [5] was that the countert-
erms introduced to renormalize the perturbatively calculated
potential, based upon naive dimensional analysis (“Weinberg
counting,” cf. Sec. II B), are also sufficient to renormalize
the nonperturbative resummation of the potential in the LS
equation.

Weinberg’s assumption may not be correct as first pointed
out by Kaplan et al. [68], and we refer the interested reader to
Sec. 4.5 of Ref. [1] for a comprehensive discussion of the issue.
Even today, no generally accepted solution to this problem
has emerged and some more recent proposals can be found in
Refs. [69–76]. Concerning the construction of quantitative NN
potential (by which we mean NN potentials suitable for use
in contemporary many-body nuclear methods), only Weinberg
counting has been used with success during the past 25 years
[1,6,17,21,23,26], which is why also in the present work we
will apply Weinberg counting.

In spite of the criticism, Weinberg counting may be
perceived as not unreasonable by the following argument. For
a successful EFT (in its domain of validity), one must be able to
claim independence of the predictions on the regulator within
the theoretical error. Also, truncation errors must decrease as
we go to higher and higher orders. These are precisely the
goals of renormalization.

Lepage [77] has stressed that the cutoff independence
should be examined for cutoffs below the hard scale and not
beyond. Ranges of cutoff independence within the theoretical
error are to be identified using Lepage plots [77]. A systematic
investigation of this kind has been conducted in Ref. [78].
In that work, the error of the predictions was quantified by
calculating the χ2/datum for the reproduction of the np elastic
scattering data as a function of the cutoff parameter # of
the regulator function Eq. (2.43). Predictions by chiral np
potentials at order NLO and NNLO were investigated applying
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with Ep′′ ≡
√

M2
N + p′′2 and MN being the nucleon mass.

The advantage of using a relativistic scattering equation is that
it automatically includes relativistic kinematical corrections
to all orders. Thus, in the scattering equation, no propagator
modifications are necessary when moving up to higher orders.

Defining

V̂ ( #p′, #p) ≡ 1
(2π )3

√
MN

Ep′
V ( #p′, #p)

√
MN

Ep

(2.39)

and

T̂ ( #p′, #p) ≡ 1
(2π )3

√
MN

Ep′
T ( #p′, #p)

√
MN

Ep

, (2.40)

where the factor 1/(2π )3 is added for convenience, the BbS
equation collapses into the usual, nonrelativistic Lippmann-
Schwinger (LS) equation,

T̂ ( #p′, #p) = V̂ ( #p′, #p) +
∫

d3p′′ V̂ ( #p′, #p′′)

× MN

p2 − p′′2 + iε
T̂ ( #p′′, #p) . (2.41)

Since V̂ satisfies Eq. (2.41), it may be regarded as a nonrela-
tivistic potential. By the same token, T̂ may be considered as
the nonrelativistic T matrix. All technical aspects associated
with the solution of the LS equation can be found in
Appendix A of Ref. [65], including specific formulas for the
calculation of the np and pp phase shifts (with Coulomb).
Additional details concerning the relevant operators and their
decompositions are given in Sec. 4 of Ref. [66]. Finally,
computational methods to solve the LS equation are found
in Ref. [67].

G. Regularization and nonperturbative renormalization

Iteration of V̂ in the LS equation, Eq. (2.41), requires cutting
V̂ off for high momenta to avoid infinities. This is consistent
with the fact that ChPT is a low-momentum expansion which
is valid only for momenta Q < #χ ≈ 1 GeV. Therefore, the
potential V̂ is multiplied with the regulator function f (p′,p),

V̂ ( #p′, #p) '−→ V̂ ( #p′, #p) f (p′,p) (2.42)

with

f (p′,p) = exp[−(p′/#)2n − (p/#)2n] , (2.43)

such that

V̂ ( #p′, #p) f (p′,p)

≈ V̂ ( #p′, #p)
{

1 −
[(

p′

#

)2n

+
(

p

#

)2n]
+ · · ·

}
. (2.44)

For the cutoff parameter #, we apply three different values,
namely, 450, 500, and 550 MeV.

Equation (2.44) provides an indication of the fact that the
exponential cutoff does not necessarily affect the given order
at which the calculation is conducted. For sufficiently large
n, the regulator introduces contributions that are beyond the
given order. Assuming a good rate of convergence of the chiral

expansion, such orders are small as compared to the given order
and thus do not affect the accuracy at the given order. Thus,
we use n = 2 for 3PE and 2PE and n = 4 for 1PE (except in
LO and NLO, where we use n = 2 for 1PE). For contacts of
order ν, n is chosen such that 2n > ν.

In our calculations, we apply, of course, the exponential
form, Eq. (2.43), and not the expansion, Eq. (2.44). On a
similar note, we also do not expand the square-root factors
in Eqs. (2.39) and (2.40) because they are kinematical factors
which guarantee relativistic elastic unitarity.

It is pretty obvious that results for the T matrix may
depend sensitively on the regulator and its cutoff parameter.
The removal of such regulator dependence is known as
renormalization.

The renormalization of the perturbatively calculated NN
potential is not a problem. The problem is nonperturbative
renormalization. This problem typically occurs in nuclear
EFT because nuclear physics is characterized by bound states
and large scattering lengths, which are nonperturbative in
nature. Or in other words, to obtain the nuclear amplitude,
the potential has to be resummed (to infinite orders) in the LS
equation, Eq. (2.41). EFT power counting may be different for
nonperturbative processes as compared to perturbative ones.
Such difference may be caused by the infrared enhancement
of the reducible diagrams generated in the LS equation.

Weinberg’s implicit assumption [5] was that the countert-
erms introduced to renormalize the perturbatively calculated
potential, based upon naive dimensional analysis (“Weinberg
counting,” cf. Sec. II B), are also sufficient to renormalize
the nonperturbative resummation of the potential in the LS
equation.

Weinberg’s assumption may not be correct as first pointed
out by Kaplan et al. [68], and we refer the interested reader to
Sec. 4.5 of Ref. [1] for a comprehensive discussion of the issue.
Even today, no generally accepted solution to this problem
has emerged and some more recent proposals can be found in
Refs. [69–76]. Concerning the construction of quantitative NN
potential (by which we mean NN potentials suitable for use
in contemporary many-body nuclear methods), only Weinberg
counting has been used with success during the past 25 years
[1,6,17,21,23,26], which is why also in the present work we
will apply Weinberg counting.

In spite of the criticism, Weinberg counting may be
perceived as not unreasonable by the following argument. For
a successful EFT (in its domain of validity), one must be able to
claim independence of the predictions on the regulator within
the theoretical error. Also, truncation errors must decrease as
we go to higher and higher orders. These are precisely the
goals of renormalization.

Lepage [77] has stressed that the cutoff independence
should be examined for cutoffs below the hard scale and not
beyond. Ranges of cutoff independence within the theoretical
error are to be identified using Lepage plots [77]. A systematic
investigation of this kind has been conducted in Ref. [78].
In that work, the error of the predictions was quantified by
calculating the χ2/datum for the reproduction of the np elastic
scattering data as a function of the cutoff parameter # of
the regulator function Eq. (2.43). Predictions by chiral np
potentials at order NLO and NNLO were investigated applying
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FIG. 8: (Color online) Chiral expansion of the np phase shifts in comparison with the Nijmegen [20] (solid dots) and the GWU
[100] (open triangles) np partial wave analysis. Black dotted, orange dashed, green short-dashed-dotted, blue dashed-double-
dotted and violet long-dashed-dotted lines show the results at LO, NLO, N2LO, N3LO and N4LO, respectively, calculated using
the cuto↵ ⇤ = 450MeV. Only those partial waves are shown which involve contact interactions at N4LO.

A. Convergence of the chiral expansion

Having specified the fitting procedure, we are now in the position to present our results. In Fig. 8, we show the
resulting np phase shifts and mixing angles in the fitted channels, namely in the S-, P- and D-waves and the mixing
angles ✏1 and ✏2, in comparison with the Nijmegen multi-energy [20] and the GWU single-energy [100] partial wave
analyses. While we restrict ourselves to the case of the intermediate cuto↵ of ⇤ = 450 MeV throughout this section,
the results for other cuto↵ values are qualitatively similar. Notice further that the P- and D-wave phase shifts and
the mixing angles ✏1 and ✏2 (the D-wave phase shifts and the mixing angle ✏2) are predicted in a parameter-free way
at LO (up to N2LO). As expected, our results are similar to the ones of Refs. [6, 7], where a coordinate-space version
of the local regulator was employed and the fits were performed to the NPWA. In most of the channels shown, one
observes a good convergence of the chiral expansion with the results showing little changes between N3LO and N4LO.

The situation is, however, di↵erent for F-waves where the results are still not converged at the level of N4LO as
shown in Fig. 9. Here, the di↵erences between the N3LO and N4LO predictions are clearly visible, and the empirical
phase shifts are still not reproduced at N4LO. To further elaborate on this issue, we performed fits based on the
N4LO chiral potential and including the leading F-wave contact interactions which apear at N5LO and are given
in Eq. (2.17). Here and in what follows, the resulting partial N5LO potential is referred to as N4LO+. As will be
discussed in section VIIB, the resulting N5LO contact interactions appear to be of a natural size. The di↵erence
between the N4LO and N4LO+ results can thus be regarded as a lower bound of the N4LO theoretical uncertainty. In
the resonance-saturation picture, it can be traced back to the short-range contributions due to heavy-meson exchanges
which are not accounted for at the level of N4LO. The fact that the LECs Ei come out of a natural size suggests that
the poor convergence pattern for F-waves shown in Fig. 9 does not reflect any failure of the chiral EFT. Rather, the
3F2, 1F3 and 3F3 partial waves simply do not provide a suitable testing ground for the chiral pion exchange potential
as originally suggested in Ref. [67] due to the large short-range contributions to the corresponding phase shifts at
energies Elab & 150 MeV. Notice that the impact of short-range operators decreases rapidly with increasing values of
the orbital angular momentum and becomes small for G- and higher partial waves. Finally, we emphasize that the

f(p0, p) = exp[�((~p0 � ~p)2 +m2
⇡)/⇤

2] (1)
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Description of the np & pp data at various chiral orders

Energy bin LO NLO N2LO N3LO N4LO N4LO+

neutron-proton data

0 � 100 MeV 73 2.2 1.23 1.08 1.08 1.07

0 � 200 MeV 62 5.4 1.77 1.09 1.08 1.06

0 � 300 MeV 75 14 4.4 1.99 1.18 1.10

proton-proton data

0 � 100 MeV 2300 10 2.1 0.91 0.88 0.86

0 � 200 MeV 1780 90 37 2.00 1.42 0.95

0 � 300 MeV 1380 88 41 3.42 1.67 0.99

Elab bin LO NLO N
2
LO N

3
LO N

4
LO N

4
LO

+

neutron-proton scattering data
0 � 100 73 2.2 1.2 1.08 1.08 1.07
0 � 200 62 5.4 1.8 1.09 1.08 1.07
0 � 300 75 14 4.4 1.99 1.18 1.06

proton-proton scattering data
0 � 100 2300 10 2.1 0.91 0.88 0.86
0 � 200 1780 91 33 2.00 1.42 0.95
0 � 300 1380 89 38 3.42 1.67 1.00

m ! 1
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2 LECs + 7 + 1 IB LECs + 12 LECs + 1 LEC (np) + 4 LEC

(Q0) (Q2) (Q3) (Q4) (Q5)
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Table 7. Deuteron binding energy Bd, expectation value of the kinetic energy 〈Tkin〉, asymptotic S state normalization AS ,
asymptotic D/S state ratio η, radius rd and quadrupole moment Q at various orders in the chiral expansion for the cutoff
Λ = 450MeV in comparison with empirical values. Also shown is the D-state probability PD. Notice that rd and Qd are
calculated without taking into account meson-exchange current contributions and relativistic corrections. The deuteron binding
energy is calculated by solving the relativistic Schrödinger equation.

LO NLO N2LO N3LO N4LO N4LO+ Empirical

Bd (MeV) 2.1201 2.1843 2.2012 2.2246(a) 2.2246(a) 2.2246(a) 2.224575(9) [119]

〈Tkin〉 (MeV) 14.24 13.47 14.44 14.35 14.16 14.22 –

AS (fm−1/2) 0.8436 0.8727 0.8786 0.8844 0.8847 0.8847 0.8846(8) [140]

η 0.0220 0.0236 0.0251 0.0257 0.0255 0.0255 0.0256(4) [141]

rd (fm) 1.946 1.967 1.970 1.966 1.966 1.966 1.97535(85)(b) [142]

Q (fm2) 0.227 0.249 0.268 0.272 0.269 0.270 0.2859(3) [143]

PD (%) 2.77 3.59 4.63 4.70 4.54 4.59 –
(a)

The deuteron binding energy has been taken as input in the fit.
(b)

This value corresponds to the so-called deuteron structure radius, which is defined as a square root of the difference of the deuteron, proton

and neutron mean square charge radii.

Table 8. Deuteron properties calculated based on the N4LO+ potentials of this work and the ones of ref. [8] for different cutoff
values Λ (in units of MeV). For notation see table 7. Notice that the deuteron binding energy is calculated by solving the
nonrelativistic (relativistic) Schrödinger equation for the potentials of ref. [8] (of this work).

N4LO+ potentials of [8] SMS chiral potentials at N4LO+, this work Empirical

Λ = 450 Λ = 500 Λ = 550 Λ = 350 Λ = 400 Λ = 450 Λ = 500 Λ = 550

Bd (MeV) 2.2246(a) 2.2246(a) 2.2246(a) 2.2246(a) 2.2246(a) 2.2246(a) 2.2246(a) 2.2246(a) 2.224575(9) [119]

〈Tkin〉 (MeV) 13.05 13.32 14.04 12.73 13.44 14.22 15.11 15.98 –

AS (fm−1/2) 0.8852 0.8852 0.8851 0.8848 0.8847 0.8847 0.8849 0.8851 0.8846(9) [140]

η 0.0254 0.0258 0.0257 0.0256 0.0255 0.0255 0.0257 0.0258 0.0256(4) [141]

rd (fm) 1.966 1.973 1.970 1.965 1.965 1.966 1.967 1.968 1.97535(85)(b) [142]

Q (fm2) 0.269 0.273 0.271 0.265 0.267 0.270 0.273 0.276 0.2859(3) [143]

PD (%) 4.38 4.10 4.13 3.58 4.12 4.59 5.01 5.34 –
(a)

The deuteron binding energy has been taken as input in the fit.
(b)

This value corresponds to the so-called deuteron structure radius, which is defined as a square root of the difference of the deuteron, proton

and neutron mean square charge radii.

of the redundant contact interactions at order Q4, see ta-
ble II of ref. [6]. Further, we observe somewhat larger val-
ues for the asymptotic S-state normalization AS as com-
pared with AS = 0.8843 . . . 0.8846 fm−1/2 using the N4LO
potentials of ref. [7]. This difference emerges primarily
from using the πN LECs from the Roy-Steiner equa-
tion analysis. The remaining deuteron properties come out
rather similar to the ones based on the coordinate-space
regularized potentials of refs. [7].

In fig. 15, we show the deuteron wave functions at
N4LO+ for all considered cutoff values (left panel). The S-
state wave functions appear to be very stable with respect
to the cutoff variation at distances r ! 1 fm and take the
values of u(r)/r|r=0 = 0.32 . . . 0.55 fm−3/2, depending on
the cutoff, at the origin. This has to be compared with the
corresponding variation for the N4LO potentials of ref. [7],
u(r)/r|r=0 = −0.22 . . . 0.14 fm−3/2, and is in line with a
significantly smaller amount of short-distance repulsion in

the new potentials already mentioned in connection with
the expectation value of the kinetic energy. The D-state
wave function shows a considerably stronger cutoff varia-
tion and becomes insensitive to the values of Λ only for
r ! 2.5 fm. We also show in the right panel of fig. 15 the
corresponding wave functions from the nonlocal poten-
tials of ref. [8] at N4LO+. The oscillations occur presum-
ably due to the non-Gaussian form of the regulator func-
tions employed in that paper, i.e. due to choosing n ≥ 2
in eq. (2). Interestingly, one observes that the maximum
probability for the nucleons be in a D-state is shifted in the
potentials of ref. [8] towards considerably larger distances.
This could be a consequence of a stronger suppression of
the tensor part of the OPEP at intermediate distances for
the nonlocal regulator employed in that paper.

Finally, we list in table 9 our results for the asymp-
totic S state normalization AS and asymptotic D/S state
ratio η at N4LO+ along with the corresponding uncer-

P. Reinert, H. Krebs, and E. Epelbaum, Eur. Phys. J. A 54 (2018) 86 (RKE)
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forces with incident energies, Elab = 212 MeV and Elab = 284 MeV. The meanings of line styles

are same as Fig. 4.

information in the past decades. Recently, it was applied to study the Wigner SU(4) sym-

metry in the strong interaction from the perspective of NN scattering in the framework of

chiral e↵ective field theory. An entanglement power of S matrix was defined to describe the

averaged entanglement ability of the scattering matrix by considering all initial states [41],

"(Ŝ) = 1�
Z

d⌦1

4⇡

d⌦2

4⇡
Tr1[⇢̂

2
1]. (24)

Here, ⇢̂1 is a reduced density matrix for the nucleon 1 in the spin space which can be obtained

from the two-nucleon density matrix ⇢̂12,

⇢̂1 = Tr2(⇢̂12) = Tr2(| outih out|). (25)

The scattering state | outi is generated by the initial state and S matrix,

| outi = Ŝ| ini. (26)
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FIG. 5. The di↵erential cross sections for pp scattering calculated by various high-precision nuclear

forces with incident energies, Elab = 50 MeV and Elab = 96 MeV. The meanings of line styles are

same as Fig. 4.

With the incident energy increment, the discrepancies in d�/d⌦ from these potentials

more pronounced. In Fig. 6, the di↵erential cross sections for pp scattering with Elab = 212

MeV and Elab = 284 MeV at di↵erent scattering angles are given. The chiral potentials,

which do not accurately describe the F channels, exhibit significant deviations from experi-

mental data at both forward and backward scattering angles. This is due to the construction

of the S-matrix based on phase shifts. At higher collision energies, the convergence of the

momentum expansion for chiral potentials deteriorates.

IV. ENTANGLEMENTS OF THE NUCLEON-NUCLEON SCATTERING

The entanglement of identical particles perfectly exhibits the nonlocality of quantum

mechanics and has attracted numerous interesting investigations in the field of quantum

16

Total cross sections

FIG. 7. The entanglement power at l = 0 channels from di↵erent high precision NN potentials.

These results are compared to those from PWA93.

distinct behaviors [65]. Furthermore, the spin entanglement can be detected by measuring

the spin polarizations of one nucleon in three directions during polarization experiments,

which relates to the spin correlation parameters [66].

V. THE BRUECKNER HARTREE-FOCK METHOD

The realistic NN interaction cannot be directly applied to exactly describe nuclear many-

body systems, such as finite nuclei and infinite nuclear matter within the independent-

particle approximation. It should be normalized to treat the strong repulsion at short-

range and take three-body force into account in a non-relativistic framework. An available

renormalization method was named as Brueckner Hartree-Fock (BHF) method, where an

e↵ective interaction G will replace of the realistic NN interaction, V within the Bethe-

Goldstone equation [52],

G(!, kF ) = V +
X

k1,k2>kF

V
Q(k1, k2)

! � "1(k1)� "2(k2) + i✏
G(!, kF ), (30)

where kF is the Fermi momentum of the nucleon, ! is the starting energy, Q(k1, k2) is the

Pauli exclusion operator, and "(k) is the single-particle energy given as,

"(k) =
k
2

2MN
+ U(k; kF ) (31)

=
k
2

2MN
+Re

X

k0kF

hkk0|G("1(k1) + "2(k2), kF )|kk0iA.
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Bethe-Goldstone equation 

Single-particle energy 

Single-particle potential 

Energy per nucleon 

potentials.
Later, this state-of-the-art chiral NN potentials were applied

on study of few-nucleon systems [28], such as the nucleon-
deuteron scatter and some experimental observables in 3H, 4He,
and 6Li with various ab initio few-body methods, where the chi-
ral potential also displayed magnificent convergence at higher-
order case. There are more mass-mediate and heavy nuclei ex-
isted, which should be described by the chiral NN potential-
s. Up to oxygen isotope, the properties of light nuclei were
calculated successfully by the Greens function Monte Carlo
method [29], the self-consistent Greens function method [30],
the coupled-cluster method [31], the lattice chiral effective
field theory [32, 33], the no core shell model [34], relativistic
Brueckner-Hartree-Fock method [35] and so on. However it is
still very difficult to calculate the heavy nuclei with present ab
initio methods. Fortunately, a special nuclear many-body sys-
tem, infinite nuclear matter is also widely studied to understand
the nuclear structure and compact star in astrophysics. Due to
the symmetries invariance, the infinite nuclear matter is much
easier described by ab initio methods.

So far, the chiral NN potentials were adopted to calculate
the properties of infinite nuclear matter up to N3LO with vari-
ous ab initio many-body methods, e.g. self-consistent Green’s
function method [36], coupled-cluster theory [37], many-body
perturbation theory [38], Brueckner-Hartree-Fock (BHF) theo-
ry [39, 40] and so on. In addition, Sammarruca et al. discussed
the convergence of chiral NN potentials in infinite nuclear mat-
ter with time-ordered perturbation theory from NLO to N3LO
(Ihado chiral potentials) [41]. However, they did not find a good
convergence pattern in those calculations.

Therefore, in this letter, we would like to study the properties
of nuclear matter using the state-of-the-art chiral NN potential-
s up to fifth order of chiral expansion worked by Epelbaum et
al. [27] with BHF theory and discuss the convergence of these
potentials in description the equations of state (EOSs) of sym-
metric nuclear matter (SNM) and pure neutron matter (PNM).

In BHF theory of nuclear matter, the realistic NN potential
determined by the NN scattering data will be replaced by an
effective NN interaction, i.e. G-matrix, in terms of the solution
of Bethe-Goldstone equation [39, 42],

G[ω, ρ] = V +
∑

ka,kb>kF

V
|kakb〉〈kakb|

ω − e(ka) − e(kb) + iε
G[ω, ρ], (1)

where V is a realistic NN potential provided by chiral effec-
tive theory, ρ is the nucleon number density, and ω the starting
energy. The single-particle energy is

e(k) = e(k; ρ) =
k2

2m
+ U(k, ρ). (2)

The continuous choice for the single-particle potential
U(k, ρ) is used in the present BHF theory [42],

U(k; ρ) = $
∑

k′<kF

〈kk′|G[e(k) + e(k′); ρ]|kk′〉a, (3)

where the subscript a indicates antisymmetrization of the ma-
trix elements. These equations are coupled together and solved

self-consistently. Finally, in the BHF theory, we can obtain the
energy per nucleon as,

E
A
=

3
5

k2
F

2m
+

1
2ρ
$
∑

k,k′<kF

〈kk′|G[e(k) + e(k′); ρ]|kk′〉a. (4)

In Fig. 1, the equations of state (EOSs) of SNM (N = Z) are
plotted for chiral NN potentials from LO to N4LO with differ-
ent coordinate-space cutoffs, R = 0.8, 0.9, 1.0, 1.1 and 1.2 fm.
The EOSs with LO and NLO NN potentials have lager binding
energies at larger cutoffs R. With the higher order terms includ-
ed in the chiral potentials, the smaller cutoff potential gener-
ates the more binding system for N2LO and N3LO. Finally, in
N4LO NN potential, the situation returns to the case at LO and
NLO potentials. On the other hand, in the work of Summarruca
et al [41] toward order-by-order calculations with Ihado chiral
potentials where the regularization on potential is considered
by momentum cutoffs, SNM had the largest binding energy at
smallest momentum cutoff for NLO chiral potentials, while the
EOSs with N2LO and N3LO chiral potentials obtain more at-
tractive contributions at largest momentum cutoff and smallest
momentum cutoff, respectively. Therefore, the regularization
method employed on the chiral potentials will affect the con-
vergence of chiral potentials obviously. Once we fix a cutoff,
R, we can find the binding energies firstly increase from OL to
N2LO at a certain density, and then decreases from N2LO to
N4LO. Up to ρ = 0.4 fm3, the EOSs with N3LO and N4LO po-
tentials have the saturation points except the cases with N3LO
at R = 0.8 fm and R = 0.9 fm. Such wobbly convergence be-
havior is very similar with the calculation of nucleon-deuteron
total cross section with same potentials [28].

We would like to show the convergence of EOSs with dif-
ferent chiral expansion order of the chiral NN potential more
clearly. The EOSs of SNM obtained from N2LO to N4LO chi-
ral NN potentials at fixed cutoff are given in Fig. 2. In the left
panel, the cutoff size is chosen as R = 0.9 fm. The binding
energies becomes smaller and smaller by including higher per-
turbation order in chiral NN potential. It becomes saturation up
to N4LO force. For the R = 1.0 fm case, the convergence of
chiral NN potential in SNM is similar.

From the Fig. 1, we can find that all EOSs from N4LO chiral
potentials have the saturation point, i.e. saturation energies and
saturation densities. The saturation energies per particles, satu-
ration densities and effective nucleon masses at corresponding
cutoffs are listed in Table. 1. The results from another high-
precision potential, AV18 potential, are also listed to compare
with each other. The saturation properties of N4LO chiral po-
tentials are consistent with those obtained with AV18 potential.
All saturation properties are still far from the empirical data
(ρsat ∼ 0.16 fm−3 and E/A ∼ −16 MeV), since it is necessary
to include the three-body force in non-relativistic framework to
reproduce the empirical saturation properties [39, 42]. In con-
ventional BHF calculation, it was found that the realistic NN
potential which has the larger D−state probability, PD of the
deuteron, would produce the smaller saturation binding energy
and corresponding saturation density [6, 39]. These saturation
properties of SNM with different realistic potentials will de-

2

potentials.
Later, this state-of-the-art chiral NN potentials were applied

on study of few-nucleon systems [28], such as the nucleon-
deuteron scatter and some experimental observables in 3H, 4He,
and 6Li with various ab initio few-body methods, where the chi-
ral potential also displayed magnificent convergence at higher-
order case. There are more mass-mediate and heavy nuclei ex-
isted, which should be described by the chiral NN potential-
s. Up to oxygen isotope, the properties of light nuclei were
calculated successfully by the Greens function Monte Carlo
method [29], the self-consistent Greens function method [30],
the coupled-cluster method [31], the lattice chiral effective
field theory [32, 33], the no core shell model [34], relativistic
Brueckner-Hartree-Fock method [35] and so on. However it is
still very difficult to calculate the heavy nuclei with present ab
initio methods. Fortunately, a special nuclear many-body sys-
tem, infinite nuclear matter is also widely studied to understand
the nuclear structure and compact star in astrophysics. Due to
the symmetries invariance, the infinite nuclear matter is much
easier described by ab initio methods.

So far, the chiral NN potentials were adopted to calculate
the properties of infinite nuclear matter up to N3LO with vari-
ous ab initio many-body methods, e.g. self-consistent Green’s
function method [36], coupled-cluster theory [37], many-body
perturbation theory [38], Brueckner-Hartree-Fock (BHF) theo-
ry [39, 40] and so on. In addition, Sammarruca et al. discussed
the convergence of chiral NN potentials in infinite nuclear mat-
ter with time-ordered perturbation theory from NLO to N3LO
(Ihado chiral potentials) [41]. However, they did not find a good
convergence pattern in those calculations.

Therefore, in this letter, we would like to study the properties
of nuclear matter using the state-of-the-art chiral NN potential-
s up to fifth order of chiral expansion worked by Epelbaum et
al. [27] with BHF theory and discuss the convergence of these
potentials in description the equations of state (EOSs) of sym-
metric nuclear matter (SNM) and pure neutron matter (PNM).

In BHF theory of nuclear matter, the realistic NN potential
determined by the NN scattering data will be replaced by an
effective NN interaction, i.e. G-matrix, in terms of the solution
of Bethe-Goldstone equation [39, 42],

G[ω, ρ] = V +
∑

ka,kb>kF

V
|kakb〉〈kakb|

ω − e(ka) − e(kb) + iε
G[ω, ρ], (1)

where V is a realistic NN potential provided by chiral effec-
tive theory, ρ is the nucleon number density, and ω the starting
energy. The single-particle energy is

e(k) = e(k; ρ) =
k2

2m
+ U(k, ρ). (2)

The continuous choice for the single-particle potential
U(k, ρ) is used in the present BHF theory [42],

U(k; ρ) = $
∑

k′<kF

〈kk′|G[e(k) + e(k′); ρ]|kk′〉a, (3)

where the subscript a indicates antisymmetrization of the ma-
trix elements. These equations are coupled together and solved

self-consistently. Finally, in the BHF theory, we can obtain the
energy per nucleon as,

E
A
=

3
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F

2m
+

1
2ρ
$
∑

k,k′<kF

〈kk′|G[e(k) + e(k′); ρ]|kk′〉a. (4)

In Fig. 1, the equations of state (EOSs) of SNM (N = Z) are
plotted for chiral NN potentials from LO to N4LO with differ-
ent coordinate-space cutoffs, R = 0.8, 0.9, 1.0, 1.1 and 1.2 fm.
The EOSs with LO and NLO NN potentials have lager binding
energies at larger cutoffs R. With the higher order terms includ-
ed in the chiral potentials, the smaller cutoff potential gener-
ates the more binding system for N2LO and N3LO. Finally, in
N4LO NN potential, the situation returns to the case at LO and
NLO potentials. On the other hand, in the work of Summarruca
et al [41] toward order-by-order calculations with Ihado chiral
potentials where the regularization on potential is considered
by momentum cutoffs, SNM had the largest binding energy at
smallest momentum cutoff for NLO chiral potentials, while the
EOSs with N2LO and N3LO chiral potentials obtain more at-
tractive contributions at largest momentum cutoff and smallest
momentum cutoff, respectively. Therefore, the regularization
method employed on the chiral potentials will affect the con-
vergence of chiral potentials obviously. Once we fix a cutoff,
R, we can find the binding energies firstly increase from OL to
N2LO at a certain density, and then decreases from N2LO to
N4LO. Up to ρ = 0.4 fm3, the EOSs with N3LO and N4LO po-
tentials have the saturation points except the cases with N3LO
at R = 0.8 fm and R = 0.9 fm. Such wobbly convergence be-
havior is very similar with the calculation of nucleon-deuteron
total cross section with same potentials [28].

We would like to show the convergence of EOSs with dif-
ferent chiral expansion order of the chiral NN potential more
clearly. The EOSs of SNM obtained from N2LO to N4LO chi-
ral NN potentials at fixed cutoff are given in Fig. 2. In the left
panel, the cutoff size is chosen as R = 0.9 fm. The binding
energies becomes smaller and smaller by including higher per-
turbation order in chiral NN potential. It becomes saturation up
to N4LO force. For the R = 1.0 fm case, the convergence of
chiral NN potential in SNM is similar.

From the Fig. 1, we can find that all EOSs from N4LO chiral
potentials have the saturation point, i.e. saturation energies and
saturation densities. The saturation energies per particles, satu-
ration densities and effective nucleon masses at corresponding
cutoffs are listed in Table. 1. The results from another high-
precision potential, AV18 potential, are also listed to compare
with each other. The saturation properties of N4LO chiral po-
tentials are consistent with those obtained with AV18 potential.
All saturation properties are still far from the empirical data
(ρsat ∼ 0.16 fm−3 and E/A ∼ −16 MeV), since it is necessary
to include the three-body force in non-relativistic framework to
reproduce the empirical saturation properties [39, 42]. In con-
ventional BHF calculation, it was found that the realistic NN
potential which has the larger D−state probability, PD of the
deuteron, would produce the smaller saturation binding energy
and corresponding saturation density [6, 39]. These saturation
properties of SNM with different realistic potentials will de-
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potentials.
Later, this state-of-the-art chiral NN potentials were applied

on study of few-nucleon systems [28], such as the nucleon-
deuteron scatter and some experimental observables in 3H, 4He,
and 6Li with various ab initio few-body methods, where the chi-
ral potential also displayed magnificent convergence at higher-
order case. There are more mass-mediate and heavy nuclei ex-
isted, which should be described by the chiral NN potential-
s. Up to oxygen isotope, the properties of light nuclei were
calculated successfully by the Greens function Monte Carlo
method [29], the self-consistent Greens function method [30],
the coupled-cluster method [31], the lattice chiral effective
field theory [32, 33], the no core shell model [34], relativistic
Brueckner-Hartree-Fock method [35] and so on. However it is
still very difficult to calculate the heavy nuclei with present ab
initio methods. Fortunately, a special nuclear many-body sys-
tem, infinite nuclear matter is also widely studied to understand
the nuclear structure and compact star in astrophysics. Due to
the symmetries invariance, the infinite nuclear matter is much
easier described by ab initio methods.

So far, the chiral NN potentials were adopted to calculate
the properties of infinite nuclear matter up to N3LO with vari-
ous ab initio many-body methods, e.g. self-consistent Green’s
function method [36], coupled-cluster theory [37], many-body
perturbation theory [38], Brueckner-Hartree-Fock (BHF) theo-
ry [39, 40] and so on. In addition, Sammarruca et al. discussed
the convergence of chiral NN potentials in infinite nuclear mat-
ter with time-ordered perturbation theory from NLO to N3LO
(Ihado chiral potentials) [41]. However, they did not find a good
convergence pattern in those calculations.

Therefore, in this letter, we would like to study the properties
of nuclear matter using the state-of-the-art chiral NN potential-
s up to fifth order of chiral expansion worked by Epelbaum et
al. [27] with BHF theory and discuss the convergence of these
potentials in description the equations of state (EOSs) of sym-
metric nuclear matter (SNM) and pure neutron matter (PNM).

In BHF theory of nuclear matter, the realistic NN potential
determined by the NN scattering data will be replaced by an
effective NN interaction, i.e. G-matrix, in terms of the solution
of Bethe-Goldstone equation [39, 42],

G[ω, ρ] = V +
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tive theory, ρ is the nucleon number density, and ω the starting
energy. The single-particle energy is
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The continuous choice for the single-particle potential
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From the Fig. 1, we can find that all EOSs from N4LO chiral
potentials have the saturation point, i.e. saturation energies and
saturation densities. The saturation energies per particles, satu-
ration densities and effective nucleon masses at corresponding
cutoffs are listed in Table. 1. The results from another high-
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with each other. The saturation properties of N4LO chiral po-
tentials are consistent with those obtained with AV18 potential.
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N4LO NN potential, the situation returns to the case at LO and
NLO potentials. On the other hand, in the work of Summarruca
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EOSs with N2LO and N3LO chiral potentials obtain more at-
tractive contributions at largest momentum cutoff and smallest
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vergence of chiral potentials obviously. Once we fix a cutoff,
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N2LO at a certain density, and then decreases from N2LO to
N4LO. Up to ρ = 0.4 fm3, the EOSs with N3LO and N4LO po-
tentials have the saturation points except the cases with N3LO
at R = 0.8 fm and R = 0.9 fm. Such wobbly convergence be-
havior is very similar with the calculation of nucleon-deuteron
total cross section with same potentials [28].

We would like to show the convergence of EOSs with dif-
ferent chiral expansion order of the chiral NN potential more
clearly. The EOSs of SNM obtained from N2LO to N4LO chi-
ral NN potentials at fixed cutoff are given in Fig. 2. In the left
panel, the cutoff size is chosen as R = 0.9 fm. The binding
energies becomes smaller and smaller by including higher per-
turbation order in chiral NN potential. It becomes saturation up
to N4LO force. For the R = 1.0 fm case, the convergence of
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From the Fig. 1, we can find that all EOSs from N4LO chiral
potentials have the saturation point, i.e. saturation energies and
saturation densities. The saturation energies per particles, satu-
ration densities and effective nucleon masses at corresponding
cutoffs are listed in Table. 1. The results from another high-
precision potential, AV18 potential, are also listed to compare
with each other. The saturation properties of N4LO chiral po-
tentials are consistent with those obtained with AV18 potential.
All saturation properties are still far from the empirical data
(ρsat ∼ 0.16 fm−3 and E/A ∼ −16 MeV), since it is necessary
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The EOSs and symmetry energy from N4LO chiral potentials
NUCLEAR MATTER PROPERTIES WITH NUCLEON- . . . PHYSICAL REVIEW C 96, 034307 (2017)

FIG. 1. Density dependence of the energy per particle of SNM (E/A)SNM (upper row), of PNM (E/A)PNM (middle row), and of the
symmetry energy asymm (lower row) based on chiral NN potentials of [35,36] for all available cutoff values in the range of R = 0.8–1.2 fm.

ones reported in [59] both for SNM and PNM1 and with
the quantum Monte Carlo calculation of Ref. [38] for PNM.
For example, at the saturation density of ρ = 0.16 fm−3, the
authors of Ref. [59] found at NLO for the employed cutoff
range the values of E/A = −21 to − 17 MeV for SNM and
E/A = 10 to 12 MeV for PNM, which has to be compared
with our NLO results of E/A = −17 to − 16 MeV for SNM
and E/A = 11 to 13 MeV for PNM. The NLO prediction of
Ref. [38] for the energy per particle of PNM at ρ = 0.15 fm−3

is E/A = 10 to 13 MeV. Interestingly, the cutoff dependence
of the energy per particle of PNM at NLO is qualitatively
different from the one found in [59], which demonstrates that
the form of the regulator does significantly affect the properties
of the resulting potentials.

Generally, our results for both SNM and PNM show an
increasing attraction in the NN force when going from LO
to N2LO, that can probably be traced back to the two-pion
exchange potential (TPEP), which has a very strong attractive
central isoscalar piece. At N3LO, the chiral TPEP receives
further attractive contributions but also develops a repulsive
short-range core. The additional repulsion at N4LO comes
from the contributions to the TPEP at this order. The EOSs

1We cannot compare our N2LO and N3LO predictions with those of
Ref. [59] since no results based on NN interactions only are provided
in that work.

based on the N3LO and N4LO potentials alone show saturation
points below ρ = 0.4 fm−3 except for N3LO at R = 0.8 fm
and R = 0.9 fm.

It is instructive to compare the results based on the most
accurate chiral potentials at N4LO with the ones from high-
precision phenomenological interactions such as the AV18
potential [9]. In Table I, we list the saturation properties, sat-
uration densities, and saturation binding energies per particle,
and the nonrelativistic effective mass of the nucleon [64] at the
saturation point for the AV18 and N4LO potentials. Notice that
the listed saturation properties are still far from the empirical
data (ρsat ∼ 0.16 fm−3 and E/A ∼ 16 MeV) due to the missing
3NF contributions [57,62]. Naturally, we observe that the
results based on the hardest version of the N4LO potential
with R = 0.8 fm are rather similar to those based on AV18.
In Table II, the partial wave contributions to potential energy
at the empirical saturation density ρ = 0.16 fm−3 for different
NN potentials are listed from 1S0 to 3F3 states. It is found that
all contributions are nearly cutoff independent expect the ones
from 1S0, 3S1-3D1, and 3D3-3G3 states, which are decreasing
with the cutoffs R. Actually, the size of these contributions is
strongly dependent on the central and tensor components in
the NN potential. The smaller cutoff R corresponds to harder
interactions and gives more repulsive contribution to the NN
potential at short distance. It leads to smaller binding energy.
Our results for the saturation density and binding energy
confirm the linear correlation between these two quantities,
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and single-particle energies in the Bethe-Goldstone equation
has been shown to introduce errors well below 1 MeV for the
binding energy at saturation [19].

Concerning the inclusion of three-body forces in the BHF
approach, we use the formalism developed in Refs. [5–7],
namely a microscopic model based on meson exchange with
intermediate excitation of nucleon resonances (Delta, Roper,
and nucleon-antinucleon). The meson parameters in this
model are constrained to be compatible with the two-nucleon
potential, where possible.

For the use in BHF calculations, this TBF is reduced to
an effective, density-dependent, two-body force by averaging
over the third nucleon in the medium, the average being
weighted by the BHF defect function g, which takes account
of the nucleon-nucleon in-medium correlations [6,8,20]:

Vij (r) = ρ

∫
d3rk

∑

σk ,τk

[1 − g(rik)]2[1 − g(rjk)]2Vijk. (5)

The resulting effective two-nucleon potential has the operator
structure

Vij (r) = (τ i ·τ j )(σ i ·σ j )V τσ
C (r) + (σ i ·σ j )V σ

C (r) + VC(r)

+ Sij (r̂)
[
(τ i ·τ j )V τ

T (r) + VT (r)
]

(6)

and the components V τσ
C , V σ

C , VC, V τ
T , VT are density depen-

dent. They are added to the bare potential in the Bethe-
Goldstone equation (1) and are recalculated together with
the defect function in every iteration step until convergence
is reached. This approach has so far been followed with the
Paris [6], the V14, and the V18 [7] potentials and the results
will be shown in the following presentation of our results. For
complete details, the reader is refered to Refs. [5–7].

We begin in Fig. 1 with the saturation curves obtained with
our set of NN potentials. On the standard BHF level (black
curves) one obtains in general too strong binding, varying
between the results with the Paris, V18, and Bonn C potentials
(less binding), and those with the Bonn A, N3LO, and IS
(very strong binding). Including TBF (with the Paris, V14,
and V18 potentials; red curves) adds considerable repulsion
and yields results slightly less repulsive than the DBHF ones
with the Bonn potentials [16] (green curves). This is not
surprising, because it is well known that the major effect of the
DBHF approach amounts to including the TBF corresponding
to nucleon-antinucleon excitation by 2σ exchange within the
BHF calculation [6,7]. This is illustrated for the case of the V18
potential (open stars) by the dashed (red) curve in the
figure, which includes only the 2σ -exchange “Z-diagram”
TBF contribution. The remaining TBF components are overall
attractive and produce the final solid (red) curve in the
figure.

Figure 2 shows the saturation points of symmetric matter
extracted from the previous results. Indeed there is a strong
linear correlation between saturation density and energy,
confirming the concept of the Coester line. One can roughly
identify three groups of results: The DBHF results with the
Bonn potentials as well as the BHF+TBF results with the Paris,
V14, and V18 potentials lie in close vicinity of the empirical
value. The BHF results with Paris, V14, V18, and Bonn C form
a group with about 1–2 MeV too-large binding and saturation

FIG. 1. (Color online) Energy per nucleon of symmetric nuclear
matter obtained with different potentials and theoretical approaches.
For details see text.

at about 0.27 fm−3. The remaining potentials, in particular the
most recent CD-Bonn, N3LO, and IS, yield strong overbinding
at larger density, more than twice saturation density in the
latter cases. From a practical point of view, it would therefore
appear convenient to use the potentials of the former group
for approximate many-body calculations, because the required
corrections are smaller, at least for Brueckner-type approaches.

Historically, there is the observation that the position of
a saturation point on the Coester line seems to be strongly

FIG. 2. (Color online) Saturation points obtained with different
potentials and theoretical approaches. The (online blue) square
indicates the empirical region.
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The Bayesian analysis

An observable X in EFT can be expanded as  

where X0 is the natural size of the observable X, and cn are 
dimensionless coefficients. 

In nuclear matter, 
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Quantifying truncation errors in effective field theory
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Bayesian procedures designed to quantify truncation errors in perturbative calculations of quantum
chromodynamics observables are adapted to expansions in effective field theory (EFT). In the Bayesian approach,
such truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. Computation of
these intervals requires specification of prior probability distributions (“priors”) for the expansion coefficients.
By encoding expectations about the naturalness of these coefficients, this framework provides a statistical
interpretation of the standard EFT procedure where truncation errors are estimated using the order-by-order
convergence of the expansion. It also permits exploration of the ways in which such error bars are, and are not,
sensitive to assumptions about EFT-coefficient naturalness. We first demonstrate the calculation of Bayesian
probability distributions for the EFT truncation error in some representative examples and then focus on the
application of chiral EFT to neutron-proton scattering. Epelbaum, Krebs, and Meißner recently articulated
explicit rules for estimating truncation errors in such EFT calculations of few-nucleon-system properties. We
find that their basic procedure emerges generically from one class of naturalness priors considered and that all
such priors result in consistent quantitative predictions for 68% DOB intervals. We then explore several methods
by which the convergence properties of the EFT for a set of observables may be used to check the statistical
consistency of the EFT expansion parameter.
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I. INTRODUCTION

Effective field theories (EFTs) describe the physics of
systems with a separation of scales.1 A key element in any
EFT is a power counting that organizes calculations into
an expansion in a dimensionless parameter or parameters,
which are typically formed from ratios of the low-energy
and high-energy scales in the system under consideration. We
denote this parameter generically as Q. In the simplest case
Q = p/!b is the ratio of the typical momentum, p, of the
process of interest to the breakdown scale, !b, of the EFT, i.e.,
the scale at which the first dynamics not explicitly included
in the EFT appears. Even in more complex situations with
many low-energy scales, the EFT expansion for X can be
denoted

X = X0

∞∑

n=0

cnQ
n, (1)

where X0 is the natural size of the observable X, and {cn}
are dimensionless coefficients, some of which may be zero.
In most EFTs the expansion (1) is inherited directly from the
EFT Lagrangian or potential, with suitable additions [e.g.,
terms of the form Qn ln(Q)] owing to quantum corrections.
In nuclear physics, however, the dynamics is intrinsically
nonperturbative, and there exists at least some subclass of EFT
graphs that must be summed to all orders. The connection

*furnstahl.1@osu.edu
†klcon@uw.edu
‡phillips@phy.ohiou.edu
§wesolowski.14@osu.edu
1Pedagogical introductions to EFTs can be found in Refs. [1–3].

between the Lagrangian and observables is then less direct.
Nevertheless, a properly formulated EFT for nuclear physics is
expected to have a Q expansion for observables of the form (1)
and it is the properties of such expansions that are our concern
in this paper.

A key benefit of the perturbative series (1) is that it
permits estimation of the error induced by truncation at a
finite-order k: “truncation errors.” If the coefficients cn for
an observable were to vary significantly and unsystematically
in size, the expansion (1) would be unsuited to this end.
However, experience and the principle of naturalness suggest
that the coefficients are typically of order one, even in the more
complex nuclear context.

In Ref. [4] we laid out a recipe for uncertainty quantification
in EFTs for nuclear physics. While they are not the only
source of theory uncertainty, truncation errors are often the
dominant uncertainty in EFT calculations. We argued that
Bayesian methods [5] provide an error bar, with a well-founded
statistical interpretation, that accounts for all sources of
uncertainty in the EFT. In particular, Bayesian methods are
essential to the assessment of truncation error: assumptions (or
expectations) about the EFT are encoded in “prior probability
distribution functions” (pdfs). The Bayesian approach then
proceeds by integrating out (“marginalizing”) the coefficients
of omitted terms to establish the truncation error.

The use of priors is often controversial because they can
introduce subjective judgments about, e.g., the meaning of
naturalness into the computation. We argue that, on the
contrary, introducing and stating Bayesian priors on higher-
order EFT coefficients renders explicit in the calculation
assumptions that are present but typically not articulated. This
allows such assumptions to be applied consistently, tested, and
modified in light of new information.

0556-2813/2015/92(2)/024005(20) 024005-1 ©2015 American Physical Society
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The Bayesian analysis
The truncated error at order k is 

�X = X0�k

where the scaled, dimensionless parameter is  
�k =

1X

n=k+1

cnQ
n

In Bayesian framework, one believes with (100*p)% 
certainty the true value of the observable X lies within   

±X0d
(p)
k

of the (k+1)th order (NkLO), where d is related to the 
degree-of-belief intervals p,   

p =

Z d(p)
k

�d(p)
k

d�prh(�|ck)

prh is the posterior probability distribution functions 
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The truncation error

form factor. The equations of state generated by another cut-
off potentials have the similar behaviors. Actually, the break-
down scale Λb is a very important quantity, which determines
the magnitude of the dimensionless parameter Q and the expan-
sion coefficients, cn. In this work, we firstly follow the choice
by EKM as Λb = 600 MeV generated from the analysis of NN

scattering data [10]. In the last part of this section, it will be
discussed whether this value is suitable for the nuclear matter
system.

The extracted coefficients (c2, c3, c4, c5) are shown as func-
tions of nucleon density in Fig. 1. In SNM case, the magni-
tude of c2 is less than one, smaller than other order expansion
coefficients. This is because that the binding energies per nu-
cleon with LO and NLO chiral potentials did not have much
differences. While, c4 at low density are quite small due to the
more repulsive components provided by N3LO chiral potential
compared with those from N2LO. In PNM, all of these coeffi-
cient are located in the region [−2, 2]. The magnitude of c3 are
smallest now. These curves of coefficients become flat at high
density.

Figure 1: (Color online) The expansion coefficients, cn of binding energy per
nucleon of symmetry nuclear matter (upper panel) and pure neutron matter
(lower panel) as a polynomial form within different chiral potentials, whose
cutoffs are R = 1.0 fm.

Once the expansion coefficients are obtained, the pdfs,
pr(cn|c̄), pr(c̄), · · · , can be worked out naturally with Eq. (6).
In the calculation of prior, prh(∆|c̄), the multiplication terms
should be interrupted at some order. In this work, we take
h = 10, since the results are converged quickly in the present
numerical methods. Furthermore, the hyperparameter, δ in
prior pr(c̄) is taken as 1 following the Ref. [21]. For a given
DoB, p, like the standard confidence level, 1σ or 2σ , the in-
tegration interval, d

(p)
k

in Eq. (4) is solved inversely. Then the
truncation errors at k + 1 order of the binding energy is defined

as ±
(

E
A

)

LO
d

(p)
k

.

In Fig. 2, the EOSs of SNM with truncation errors are shown

order by order. The original EOSs generated by BHF model is
given as a solid curve as a function of density ρB, where ρB =

2k3
F/3π

2. The dark shaded bands for each color indicate the
DoB interval is 1σ standard deviation, i. e. p = 68.27%, while
the light ones corresponding to 2σ standard deviation, where
p = 95.45%. Generally speaking, a higher DoB brings a larger
uncertainty, which means the truncation errors with 1σ standard
deviation is smaller than those with 2σ. Therefore, the dark
band should be included in the light band.

Figure 2: (Color online) The EOSs of SNM with truncation errors using chiral
potentials from NLO to N4LO, whose cutoffs are R = 1.0 fm.

The truncation errors of binding energy per nucleon of SNM
at NLO are very small, especially for the 1σ case. As we shown
before, the relevant expansion coefficients, c2, are quite small
since the differences between the EOSs from the LO and NLO
are slight. From N2LO to N4LO, the truncation errors decrease
systematically order by order at each density. In the same chi-
ral expansion order, they become larger with density increasing
since the Q value calculated by using the Fermi momentum be-
comes larger. This behaviors is natural since a larger Q value
will produce a worse expansion convergence from the perturba-
tive point of view. Furthermore, it is noticed that the truncation
errors with 68.27% DoB given by Bayesian method are consis-
tent with our previous results by a simpler analysis method in
EKM scheme except those at NLO [15]. In the EKM method,
the errors of observables at NLO are estimated not only by the
shifts from NLO to LO but also by LO itself. Therefore, the
EKM uncertainty at NLO is much larger than those worked by
Bayesian method. In the other orders, the truncations errors
of NN scattering observables from EKM scheme and Bayesian
method also have the similar behaviors shown by Furnstahl et

al. [21, 23].

The analogous calculations are done for the PNM. Their
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The pairing gap in nuclear matter
PAIRING PROPERTIES OF SEMILOCAL COORDINATE- … PHYSICAL REVIEW C 108, 034002 (2023)

FIG. 4. Pairing gaps with truncation errors in the 3SD1, 1S0, and 3PF 2 channels calculated by the SMS regularized chiral NN interactions
with regulator ! = 450 MeV from LO up through N4LO. The dark-shaded band for each color indicates the 1σ degree-of-belief interval,
while the light-shaded bands correspond to 2σ standard deviation.

order by order. The truncation errors become rather small at
N4LO in particular. These calculations demonstrate that the
chiral potentials in these two channels present rather good
convergence for the current application. The truncation errors
of the 3PF 2 gaps decrease also systematically order by order
at low densities. However, such a systematic evolution is
broken as the density increases, though the truncation errors
at N3LO and N4LO are of comparable size. It indicates that
we may need higher chiral orders to reach convergence in this
channel as we point out in Fig. 2. The truncation errors of
chiral expansion for the 1S0 and 3PF 2 gaps calculated with
the SCS regularized interactions have been investigated in
Ref. [40] with an easily operational analysis methodology
proposed in Refs. [2,3]. These evaluations neglect the LO
contributions to the higher-order uncertainties, and a term
ensuring that the next order always lies within the uncertainty
band of the previous order, in contrast to Refs. [2,3]. There-
fore, the systematic evolution of the truncation errors for the
1S0 gaps with the chiral order we observe in Fig. 2 was not
found in Ref. [40]. The systematic evolution of the truncation
errors for the 3PF 2 gaps with the chiral order at low densities
we observe in Fig. 2 was also not found in Ref. [40]. We are
consistent with Ref. [40] that the uncertainties are very small
for the 1S0 channel but sizable for the 3PF 2 channel. We find
similar behavior for the truncation errors obtained with the
SCS regularized interactions (see Appendix B for details).

We emphasize that we investigate the pairing properties
of the two-nucleon forces and do not include the contribu-
tions of three-nucleon forces in this work. The pairing gaps

and the truncation errors starting from N2LO are incomplete
and should be revisited once the calculations with the three-
nucleon forces become available. The results at N2LO and
beyond obtained in this work may reveal a potentially achiev-
able accuracy at the corresponding chiral orders.

III. CONCLUSIONS AND OUTLOOK

In conclusion, we investigated the pairing properties of
state-of-the-art SCS and SMS regularized chiral EFT inter-
actions in nuclear matter within the BCS approximation.
Specifically, we calculated the pairing gaps in the 3SD1, 1S0,
and 3PF 2 channels.

We investigated the regulator dependence and the chiral-
order convergence pattern of pairing gaps. The 3SD1 and 1S0
pairing gaps show overall weak regulator dependence and
robust convergence from low to high densities, while the
3PF 2 results show chaotic behavior. The truncation errors
evaluated with the Bayesian approach present similar features
for these channels. Comparing the converged results of the
chiral interactions with those of the Av18 potential, we found
they coincide with each other at low densities for all of these
three channels. However, we observed an apparent discrep-
ancy in the results of the chiral interaction and Av18 potential
in the 3SD1 and 3PF 2 channels at high densities, indicating
the NN interactions in these two channels may need further
constraints at high scattering energies in the future.

In addition, we have investigated the effect of the
tensor force on the 3SD1 and 3PF 2 pairing gaps with the Av18
potential and the chiral interactions. We found significant

034002-5
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The summary and outlook

We calculated the properties of nuclear matter with 
different state-of-the-art chiral NN potentials. 

The equations of state of nuclear matter from different 
chiral potentials have different behaviors due to 
regularized factor. 

The chiral truncation errors in nuclear matter were 
discussed with Bayesian analysis. The chiral potentials are 
good convergence at higher order. 

They pairing gaps at different spin channels are 
calculated with chiral force in symmetric matter.  
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Nuclear force in chiral EFT

Time-ordered perturbation theory 

with effective potential 

and  

Nuclear force 
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TAMM-DANCOFF METHOD
Tamm 1945, Dancoff 1950
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Unitary transformation  

and  

A should be solved by  

Nuclear force

Nuclear force in chiral EFT

Example:  expansion in powers of the coupling constant

DQVDW]��

5HFXUVLYH�VROXWLRQ�RI�WKH�GHFRXSOLQJ�HTXDWLRQ

,Q�WKH�VWDWLF�DSSUR[LPDWLRQ��L�H��LQ�WKH�OLPLW�����������������RQH�KDV��������������������������2QH�REWDLQV�

same as in old-fashioned
perturbation theory

wave-function renormalization
(missing in old-fashioned perturbation theory)
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Power counting

Weinberg power counting for N-nucleon

A-nucleon interactions receives contributions

A: number of nucleon fields (in and out-states) 
L:  number of pion loops 
C:  number of connected pieces 
Vi:  number of vertices with vertex dimension 
di:  number of derivatives or pion mass at the vertex i 
ni:  number of nucleon fields at the vertex i

Chiral EFT based nuclear forces 11

In ChPT, graphs are analyzed in terms of powers of small external momenta over

the large scale: (Q/⇤�)⌫ , where Q is generic for a momentum (nucleon three-momentum

or pion four-momentum) or a pion mass and ⇤� ⇠ 1 GeV is the chiral symmetry breaking

scale (hadronic scale, hard scale). Determining the power ⌫ has become known as power

counting.

For the moment, we will consider only so-called irreducible graphs. By definition,

an irreducible graph is a diagram that cannot be separated into two by cutting only

nucleon lines. Following the Feynman rules of covariant perturbation theory, a nucleon

propagator carries the dimension Q
�1, a pion propagator Q

�2, each derivative in any

interaction is Q, and each four-momentum integration Q
4. This is also known as naive

dimensional analysis. Applying then some topological identities, one obtains for the

power of an irreducible diagram involving A nucleons [11]

⌫ = �2 + 2A� 2C + 2L+
X

i

�i , (25)

with

�i ⌘ di +
ni

2
� 2 . (26)

In the two equations above: for each vertex i, C represents the number of individually

connected parts of the diagram while L is the number of loops; di indicates how

many derivatives or pion masses are present and ni the number of nucleon fields. The

summation extends over all vertices present in that particular diagram. Notice also that

chiral symmetry implies �i � 0. Interactions among pions have at least two derivatives

(di � 2, ni = 0), while interactions between pions and a nucleon have one or more

derivatives (di � 1, ni = 2). Finally, pure contact interactions among nucleons (ni = 4)

have di � 0. In this way, a low-momentum expansion based on chiral symmetry can be

constructed.

Naturally, the powers must be bounded from below for the expansion to converge.

This is in fact the case, with ⌫ � 0.

Furthermore, the power formula Eq. (25) allows to predict the leading orders of

connected multi-nucleon forces. Consider a m-nucleon irreducibly connected diagram

(m-nucleon force) in an A-nucleon system (m  A). The number of separately connected

pieces is C = A�m+1. Inserting this into Eq. (25) together with L = 0 and
P

i �i = 0

yields ⌫ = 2m � 4. Thus, two-nucleon forces (m = 2) appear at ⌫ = 0, three-nucleon

forces (m = 3) at ⌫ = 2 (but they happen to cancel at that order), and four-nucleon

forces at ⌫ = 4 (they don’t cancel). More about this in the next sub-section.

For later purposes, we note that for an irreducible NN diagram (A = 2, C = 1),

the power formula collapses to the very simple expression

⌫ = 2L+
X

i

�i . (27)

To summarize, at each order ⌫ we only have a well defined number of diagrams,

which renders the theory feasible from a practical standpoint. The magnitude of what

has been left out at order ⌫ can be estimated (in a very simple way) from (Q/⇤�)⌫+1.
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NN interaction:
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derivatives (di � 1, ni = 2). Finally, pure contact interactions among nucleons (ni = 4)
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Naturally, the powers must be bounded from below for the expansion to converge.

This is in fact the case, with ⌫ � 0.

Furthermore, the power formula Eq. (25) allows to predict the leading orders of

connected multi-nucleon forces. Consider a m-nucleon irreducibly connected diagram

(m-nucleon force) in an A-nucleon system (m  A). The number of separately connected

pieces is C = A�m+1. Inserting this into Eq. (25) together with L = 0 and
P

i �i = 0

yields ⌫ = 2m � 4. Thus, two-nucleon forces (m = 2) appear at ⌫ = 0, three-nucleon

forces (m = 3) at ⌫ = 2 (but they happen to cancel at that order), and four-nucleon

forces at ⌫ = 4 (they don’t cancel). More about this in the next sub-section.

For later purposes, we note that for an irreducible NN diagram (A = 2, C = 1),
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To summarize, at each order ⌫ we only have a well defined number of diagrams,

which renders the theory feasible from a practical standpoint. The magnitude of what

has been left out at order ⌫ can be estimated (in a very simple way) from (Q/⇤�)⌫+1.

D. R. Entem, R. Machleidt, and Y. Nosyk, Phys. Rev. C 96 (2017) 024004
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