Modeling 0*νββ* decay based on nuclear forces and transition operators from chiral effective field theory

Jiangming Yao (尧江明)

School of Physics and Astronomy, Sun Yat-sen University ^中山大学物理与天文学^院

> 第九届手征有效场论研讨^会 2024年10月19日,中国长沙

Probe new physics at the nuclear energy scale

- **High-intensity frontiers**: searching for $0\nu\beta\beta$ decay, dark matter detector, atomic EDM, etc.
- **Accurate nuclear matrix elements**: crucial for testing fundamental symmetries and interactions with low-energy probes.

JMYao 2 / 26

A hypothetical nuclear decay mode: 0*νββ* decay

The two modes of β ⁻ β ⁻ decay:

$$
(A,Z) \to (A,Z+2) + 2e^- + (2\bar{\nu}_e)
$$

Nuclear Chart: decay mode of the ground state nuclide(NUBASE2020)

JMYao 3 / 26

Theoretical studies of 0*νββ* decay and neutrino physics

If 0*νββ* decay is driven by exchanging light massive Majorana neutrinos,

$$
\left\langle m_{\beta\beta}\right\rangle \equiv |\sum_{j=1}^{3}U_{\rm ej}^{2}m_{j}|=\left[\frac{m_{e}^{2}}{g_{A}^{4}G_{0\nu}\,T_{1/2}^{0\nu}\left|M^{0\nu}\right|^{2}}\right]^{1/2}
$$

Accurate values of the NMEs $M^{0\nu}$ are crucial for designing and interpreting those experiments, as they link the observed decay rate to the neutrino mass scale.

JMYao 4 / 26

- Lifetime sensitivity of the ton-scale experiments: $\mathcal{T}_{1/2}^{0\nu} > 10^{28}$ yr.
- Whether or not the ton-scale experiments are able to cover the entire parameter space for the IO case depends strongly on the employed NME.

JMYao 5 / 26

The 0*νββ* decay at different energy scales in EFT

The EFT provides a model-independent framework for describing 0*νββ* **decay.**

initial nucleus

final nucleus

JMYao 6 / 26

The basic idea of current efforts:

- Indentify the active dof at the nuclear energy scale: N*, π,*(e*, ν*)
- Write down all possible contributions to both nuclear force and transition operators according to a power counting rule, $(Q, m_\pi)/\Lambda_v$.
- Carry out a quantum many-body calculation and compute the NME.

The 0*νββ* decay operators in the chiral EFT

At $E \sim 100$ MeV: operators are expressed in terms of nucleons, pions, and leptons, arranged in the order $(Q, m_\pi/\Lambda_\chi)^\nu$,

$$
\nu = 2A + 2L - 2 + \sum_{i} \left(\frac{n_f}{2} + d - 2 + n_e \right)_i
$$

JMYao 8 / 26

 \bullet Non-relativistic chiral 2N+3N interactions (Weinberg power counting and others)

K. Hebeler, Phys. Rep. 890, 1 (2020)

• Relativistic chiral 2N interaction (up to N^2LO , different PC from the NR case)

J.-X. Lu et al., PRL128, 142002 (2022)

The Framework of IM-GCM

- **In-medium similarity renormalization group (IMSRG)**: capture dynamic correlations associated with high-energy few-particle, few- hole excitations
- **Projected generator coordinate method (PGCM)**: include the collective (static) correlations associated with pairing and deformation.

JMYao 10 / 26

The NME in the lightest candidate nucleus ⁴⁸Ca

• Multi-reference in-medium generator coordinate method (IM-GCM)

JMY et al., PRL124, 232501 (2020)

• Valence-space shell model+IMSRG (VS-IMSRG)

A. Belley et al., PRL126, 042502 (2021)

• Coupled-cluster with singlets, doublets, and partial triplets (CCSDT1) .

JMYao 11 / 26

- The contact transition operator could either enhance or quench the 0*νββ* decay of cadidate nuclei.
- The LEC g_ν^{NN} consistent with the employed chiral interaction (EM1.8/2.0) is determined based on the synthetic data.
- **The contact term turns out to enhance the** NME for 48 Ca by $43(7)$ %, thus reducing the half-life T 0*ν* 1*/*2 significantly.

R. Wirth, JMY, H. Hergert, PRL127, 242502 (2021)

Uncertainty quantification for the NME of 0*νββ* decay

The true value of the NME can be written as

$$
M^{0\nu} = M_k^{0\nu} + \epsilon_{\chi \rm EFT} + \epsilon_{\rm MBT} + \epsilon_{\rm OP} + \epsilon_{\rm EM},
$$

where the posterior probability distribution (PPD) of an LEC sample to yield results for a set of calibration observables that match experimental data

$$
\mathrm{PPD} = \{M_k^{0\nu}(\mathbf{c}) : \mathbf{c} \sim \mathcal{P}(\mathbf{c}|\mathrm{calibration})\}.
$$

from which one finds the statistical error *χ*LEC,

- *►* ϵ _{γ EFT}: chiral expansion truncation on nuclear forces
- \bullet ϵ_{MRT} : approximation in many-body methods
- **●** ϵ _{OP}: chiral expansion truncation on transition operators
- \bullet ϵ_{EM} : the error of the emulator

All the errors ϵ are assumed to be normally distributed and mutually independent.

- The NME converges with respect to the chiral expansion order *χ* of nuclear forces for candidate nuclei ⁴⁸Ca and ⁷⁶Ge.
- The EFT truncation error (evaluated using the BUQEYE method) is shrinking with *χ*.

- In the N2LO, we choose $\mu_{us} = m_{\pi}$ to eliminate all the terms depending on In $\frac{m_{\pi}^2}{\mu_{us}^2}$, and the LECs of the counterterms as $g_{\nu}^{\pi\pi} = -7.6 - (36/5) \ln(\mu/m_\rho)$, and $g_{\nu}^{\pi N}=0$. V. Cirigliano, et al., PRC97, 065501 (2018)
- \bullet The NME for ⁷⁶Ge converges with respect to the chiral expansion order of transition operators.

Quantification of the uncertainty in the NME of 76 Ge

- Our recommended value $M^{0\nu} = 2.60^{+1.28}_{-1.36}$.
- Together with the best half-life limit: $> 1.8 \times 10^{26}$ yr, it sets the upper limit $\langle m_{\beta\beta} \rangle = 187^{+205}_{-62}$ meV, and the sensitivity of the next-generation experiment $\langle m_{\beta\beta}\rangle = 22^{+24}_{-7}$ meV, covering almost the entire range of IO hierarchy.

A. Belley, JMY et al., PRL132, 182502 (2024)

Summary and perspective

- 0*νββ* decay: only way to determine the nature of neutrinos, a complementary way to determine the absolute mass scale of neutrinos. **The NMEs of candidate nuclei are crucial for designing and interpreting those experiments.**
- Large uncertainty in NMEs: major systematical uncertainty, impacting the interpretation of the measurements.
- Remarkable progress in ab initio studies of NMEs: **development of a novel ab initio method for candidate nuclei, disclosing non-trivial contributions from high-energy light neutrinos, and rapid convergence w.r.t. the chiral expansion order, a comprehensive uncertainty quantification.**

What's next?

- \bullet The NMEs of heavier candidates ${}^{82}Se, {}^{100}Mo, {}^{130}Te, {}^{136}Xe,$ with reduced uncertainty by considering higher-order nuclear interactions, reducing many-body truncation errors, and finding more constraints to shrink the uncertainty.
- Contributions from non-standard mechanisms.

Collaborators

SYSU

C.R. Ding, Q.Y. Luo, C.F. Jiao, C.C. Wang, G. Li, X. Zhang, E.F. Zhou

e PKU

L. S. Song, J. Meng, P. Ring, Y. K. Wang, P. W. Zhao

- \bullet LZU: Y.F. Niu
- CAEP: B.N. Lv
- SWU: L.J. Wang
- MSU: S. Bogner, H. Hergert, R. Wirth
- UNC: J. Engel, A. M. Romero
- TRIUMF: A. Belly, J. Holt
- TU Darmstadt: T. Miyagi
- Notre-Dame U: R. Stroberg
- UAM: B. Bally, T.Rodriguez

This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 12141501 and 12275369), the Guangdong Basic and Applied Basic Research Foundation (2023A1515010936).

Thank you for your attention!

Transition operators in chiral EFT

 $-\frac{2g_A^2m_\pi^2}{a^2+m^2}\ln\frac{m_\pi^2}{\mu^2}-K_{CT}(\tilde{q})\bigg)S'_{12}(\tilde{r}),$

VS-IMSRG method for 0*νββ* decay of heavier candidates

The ab initio VS-IMSRG method is applied to study the NMEs of heavier candidates:

- For 130 Te, $M_{L+S}^{0\nu} \in [1.52, 2.40]$
- For 136 Xe, $M_{L+S}^{0\nu} \in [1.08, 1.90]$

The uncertainty is composed of different sources: nuclear interaction, reference-state, basis extrapolation, closure approximation, and the LEC for the short-range transition operators. The values are generally smaller than those from phenomenological nuclear models.

A more comprehensive quantification analysis

different nuclear many-body solvers, convergence of NMEs with chiral expansion orders, etc.

A. Belley et al, arXiv:2307.15156 (2023)

Preprocessing the nuclear potential with SRG

Apply unitary transformations to decouple high and low-momentum states

$$
H_s = U_s H U_s^{\dagger} \equiv T_{\rm rel} + V_s
$$

from which one finds the flow equation

$$
\frac{dH_s}{ds} = [\eta_s, H_s], \quad \eta_s = [T_{\rm rel}, H_s]
$$

The flow parameter s is usually replaced with $\lambda = s^{-1/4}$ in units of ${\rm fm}^{-1}$ (a measure of the **Evolution of the potential** spread of off-diagonal strength).

$$
\frac{dV_s(k, k')}{ds} = -(k^2 - k'^2)V_s(k, k') + \frac{2}{\pi} \int_0^\infty q^2 dq(k^2 + k'^2 - 2q^2)V_s(k, q)V_s(q, k')
$$

Preprocessing the nuclear potential with SRG

- The hard core "disappears" in the SRG softened interactions
- Induced higher-body interactions: $3N, \cdots$
- S. K. Bogner et al. PPNP (2010); Wendt et al. PRC (2012)

• Apply unitary transformations to H in the configuration space

$$
\hat{H}(s) = \hat{U}(s)\hat{H}_0\hat{U}^\dagger(s)
$$

Flow equation

$$
\frac{d\hat{H}(s)}{ds} = [\hat{\eta}(s), \hat{H}(s)]
$$

- **•** Generator $\eta(s)$: chosen either to decouple a given reference state from its excitations or to decouple the valence space from the excluded spaces.
- Not necessary to construct the whole H matrix in the config. space.

H. Hergert et al., Phys. Rep. 621, 165 (2016); S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019)

- The long-range part of the NME is sensitive to the LEC $C_{^1S_0}.$
- The phase shift of the ${}^{1}S_{0}$ channel is linearly correlated to the NME.
- The neutron-proton phase-shift $\delta_{np}^{^{1}S0}$ at 50 MeV is used to weight the samples.

The "magic" interaction EM1.8/2.0: The NN (N³LO: D.R. Entem. R. Machleidt, PRC68 041001 (2003)) and local 3N interactions (N²LO: K. Hebeler et al., PRC83, 031301(R) (2011)).

The LECs of the 3N are fitted on top of the SRG evolved NN interaction.

TABLE I. Results for the c_0 and c_8 couplings fit to E_{30} = -8.482 MeV and to the point charge radius $r_{4\mu} = 1.464$ fm (based) on Ref. [26]) for the NN/3N cutoffs and different EM/EGM/PWA c_i values used. For V_{best} (SRG) interactions, the 3NF fits lead to $E_{4\mu_0} = -28.22... - 28.45$ MeV (-28.53... - 28.71 MeV).

C. Drischler et al., PRL122, 042501 (2019)

The saturation properties are not well reproduced.