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Probe new physics at the nuclear energy scale

High-intensity frontiers: searching for 0νββ decay, dark matter detector, atomic
EDM, etc.
Accurate nuclear matrix elements: crucial for testing fundamental symmetries
and interactions with low-energy probes.
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A hypothetical nuclear decay mode: 0νββ decay

The two modes of β−β− decay:

(A, Z ) → (A, Z + 2) + 2e− + (2ν̄e)
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Theoretical studies of 0νββ decay and neutrino physics

If 0νββ decay is driven by exchanging light massive Majorana neutrinos,

⟨mββ⟩ ≡ |
3∑

j=1
U2

ejmj | =
[

m2
e

g4
AG0νT 0ν

1/2 |M0ν |2

]1/2

Accurate values of the NMEs M0ν are crucial for designing and interpreting those
experiments, as they link the observed decay rate to the neutrino mass scale.
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Designing and interpreting the experiments for 0νββ decay

Lifetime sensitivity of the ton-scale experiments: T 0ν
1/2 > 1028yr.

Whether or not the ton-scale experiments are able to cover the entire parameter
space for the IO case depends strongly on the employed NME.
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The 0νββ decay at different energy scales in EFT
The EFT provides a model-independent framework for describing 0νββ decay.
Cirigliano (2018)
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Modeling 0νββ decay with operators from chiral EFT

The basic idea of current efforts:
Indentify the active dof at the
nuclear energy scale: N, π, (e, ν)
Write down all possible
contributions to both nuclear
force and transition operators
according to a power counting
rule, (Q, mπ)/Λχ.
Carry out a quantum many-body
calculation and compute the
NME.
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The 0νββ decay operators in the chiral EFT

At E ∼100 MeV: operators are expressed in terms of nucleons, pions, and leptons,
arranged in the order (Q, mπ/Λχ)ν ,

ν = 2A + 2L − 2 +
∑

i
(nf

2 + d − 2 + ne)i
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Nuclear forces from the chiral EFT
Non-relativistic chiral 2N+3N interactions (Weinberg power counting and others)

Relativistic chiral 2N interaction (up to N2LO, different PC from the NR case)
J.-X. Lu et al., PRL128, 142002 (2022)
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A novel ab initio framework for nuclei: IM-GCM

In-medium similarity renormalization group (IMSRG): capture dynamic
correlations associated with high-energy few-particle, few- hole excitations
Projected generator coordinate method (PGCM): include the collective
(static) correlations associated with pairing and deformation.
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The NME in the lightest candidate nucleus 48Ca
Multi-reference in-medium generator
coordinate method (IM-GCM)
JMY et al., PRL124, 232501 (2020)

Valence-space shell model+IMSRG
(VS-IMSRG)
A. Belley et al., PRL126, 042502 (2021)

Coupled-cluster with singlets, doublets, and
partial triplets (CCSDT1) .
S. Novario et al., PRL126, 182502 (2021)
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Contribution of the contact transition operator

The contact transition operator could either
enhance or quench the 0νββ decay of
cadidate nuclei.
The LEC gNN

ν consistent with the employed
chiral interaction (EM1.8/2.0) is determined
based on the synthetic data.
The contact term turns out to enhance the
NME for 48Ca by 43(7)%, thus reducing the
half-life T 0ν

1/2 significantly.
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R. Wirth, JMY, H. Hergert, PRL127, 242502 (2021)
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Uncertainty quantification for the NME of 0νββ decay

The true value of the NME can be written as

M0ν = M0ν
k + ϵχEFT + ϵMBT + ϵOP + ϵEM,

where the posterior probability distribution (PPD) of an LEC sample to yield results for
a set of calibration observables that match experimental data

PPD =
{
M0ν

k (c) : c ∼ P(c|calibration)
}
.

from which one finds the statistical error χLEC,
ϵχEFT: chiral expansion truncation on nuclear forces
ϵMBT: approximation in many-body methods
ϵOP: chiral expansion truncation on transition operators
ϵEM: the error of the emulator

All the errors ϵ are assumed to be normally distributed and mutually independent.
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Quantifying the error of EFT truncation on nuclear forces

The NME converges with respect to the chiral expansion order χ of nuclear forces
for candidate nuclei 48Ca and 76Ge.
The EFT truncation error (evaluated using the BUQEYE method) is shrinking
with χ.
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Quantifying the error of EFT truncation on transition operators

In the N2LO, we choose µus = mπ to eliminate all the terms depending on ln m2
π

µ2
us

,
and the LECs of the counterterms as gππ

ν = −7.6 − (36/5) ln(µ/mρ), and
gπN

ν = 0. V. Cirigliano, et al., PRC97, 065501 (2018)

The NME for 76Ge converges with respect to the chiral expansion order of
transition operators.
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Quantification of the uncertainty in the NME of 76Ge

Our recommended value M0ν = 2.60+1.28
−1.36.

Together with the best half-life limit: > 1.8 × 1026 yr, it sets the upper limit
⟨mββ⟩ = 187+205

−62 meV, and the sensitivity of the next-generation experiment
⟨mββ⟩ = 22+24

−7 meV, covering almost the entire range of IO hierarchy.
A. Belley, JMY et al., PRL132, 182502 (2024)
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Summary and perspective

0νββ decay: only way to determine the nature of neutrinos, a complementary way
to determine the absolute mass scale of neutrinos. The NMEs of candidate
nuclei are crucial for designing and interpreting those experiments.
Large uncertainty in NMEs: major systematical uncertainty, impacting the
interpretation of the measurements.
Remarkable progress in ab initio studies of NMEs: development of a novel ab
initio method for candidate nuclei, disclosing non-trivial contributions from
high-energy light neutrinos, and rapid convergence w.r.t. the chiral
expansion order, a comprehensive uncertainty quantification.

What’s next?
The NMEs of heavier candidates 82Se, 100Mo, 130Te, 136Xe, with reduced
uncertainty by considering higher-order nuclear interactions, reducing many-body
truncation errors, and finding more constraints to shrink the uncertainty.
Contributions from non-standard mechanisms.
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Transition operators in chiral EFT
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VS-IMSRG method for 0νββ decay of heavier candidates

The ab initio VS-IMSRG method is applied to
study the NMEs of heavier candidates:

For 130Te, M0ν
L+S ∈ [1.52, 2.40]

For 136Xe, M0ν
L+S ∈ [1.08, 1.90]

The uncertainty is composed of different sources:
nuclear interaction, reference-state, basis
extrapolation, closure approximation, and the
LEC for the short-range transition operators.
The values are generally smaller than those from
phenomenological nuclear models.

A more comprehensive quantification analysis
different nuclear many-body solvers, convergence
of NMEs with chiral expansion orders, etc.

A. Belley et al, arXiv:2307.15156 (2023)
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Preprocessing the nuclear potential with SRG

Apply unitary transformations to
decouple high and low-momentum
states

Hs = UsHU†
s ≡ Trel + Vs

from which one finds the flow

equation

dHs
ds = [ηs , Hs ], ηs = [Trel, Hs ] The flow parameter s is usually replaced with

λ = s−1/4 in units of fm−1 (a measure of the
spread of off-diagonal strength).Evolution of the potential

dVs(k, k ′)
ds = −(k2 − k ′2)Vs(k, k ′) + 2

π

∫ ∞

0
q2dq(k2 + k ′2 − 2q2)Vs(k, q)Vs(q, k ′)
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Preprocessing the nuclear potential with SRG

The hard core ”disappears” in the SRG softened interactions
Induced higher-body interactions: 3N, · · ·

S. K. Bogner et al. PPNP (2010); Wendt et al. PRC (2012)
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Preprocessing the Hamiltonian with IMSRG

Apply unitary transformations to H in the
configuration space

Ĥ(s) = Û(s)Ĥ0Û†(s)

Flow equation

dĤ(s)
ds = [η̂(s), Ĥ(s)]

Generator η(s): chosen either to decouple
a given reference state from its excitations
or to decouple the valence space from the
excluded spaces.
Not necessary to construct the whole H
matrix in the config. space.

H. Hergert et al., Phys. Rep. 621, 165 (2016); S. R. Stroberg et

al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019)
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Quantification of statistic uncertainty in the NME of 76Ge

The long-range part of the NME is sensitive to the LEC C1S0 .
The phase shift of the 1S0 channel is linearly correlated to the NME.
The neutron-proton phase-shift δ

1S0
np at 50 MeV is used to weight the samples.

A. Belley et al., arXiv:2408.02169 [nucl-th]
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Research plans on the measurements of 0νββ decays in China

Isotope G0ν M0ν (χEFT) T 0ν
1/2 ⟨mββ⟩ Worldwide Exps Inside China

[10−14 yr−1] [min, max] [yr] [meV] current best limits
76Ge 0.24 2.60+1.27

−1.36 > 1.8 · 1026 187+205
−62 GERDA: PRL125, 252502(2020) CDEX

82Se 1.01 > 4.6 · 1024 . CUPID-0: PRL129, 111801 (2023) NvDEx
100Mo 1.59 > 3.0 · 1024 AMoRE: arXiv:2407.05618 [nucl-ex] (2024) CPUID-China
130Te 1.42 [1.52, 2.40] > 2.2 · 1025 [236, 373] CUORE: Nature 604, 53(2022) JUNO
136Xe 1.46 [1.08, 1.90] > 2.3 · 1026 [91, 160] KamLAND-Zen: PRL130, 051801(2023) PANDAX
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The magic chiral NN+3N interaction
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