Modeling $0\nu\beta\beta$ decay based on nuclear forces and transition operators from chiral effective field theory

School of Physics and Astronomy, Sun Yat-sen University 中山大学物理与天文学院

第九届手征有效场论研讨会 2024年10月19日,中国长沙

JMYao

Probe new physics at the nuclear energy scale

- High-intensity frontiers: searching for $0\nu\beta\beta$ decay, dark matter detector, atomic EDM, etc.
- Accurate nuclear matrix elements: crucial for testing fundamental symmetries and interactions with low-energy probes.

JMYao 2 / 26

A hypothetical nuclear decay mode: $0\nu\beta\beta$ decay

• The two modes of $\beta^-\beta^-$ decay:

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + (2\overline{\nu}_e)$$

JMYao

3 / 26

Nuclear Chart: decay mode of the ground state nuclide(NUBASE2020)

Theoretical studies of $0\nu\beta\beta$ decay and neutrino physics

If $0
u\beta\beta$ decay is driven by exchanging light massive Majorana neutrinos,

$$\langle m_{etaeta}
angle \equiv |\sum_{j=1}^{3} U_{ej}^2 m_j| = \left[rac{m_e^2}{g_A^4 G_{0
u} \, T_{1/2}^{0
u} \, |\mathcal{M}^{0
u}|^2}
ight]^{1/2}$$

Accurate values of the NMEs $M^{0\nu}$ are crucial for designing and interpreting those experiments, as they link the observed decay rate to the neutrino mass scale.

JMYao

Designing and interpreting the experiments for $0 u\beta\beta$ decay

- Lifetime sensitivity of the ton-scale experiments: $T_{1/2}^{0\nu} > 10^{28}$ yr.
- Whether or not the ton-scale experiments are able to cover the entire parameter space for the IO case depends strongly on the employed NME.

JMYao 5 / 26

The $0\nu\beta\beta$ decay at different energy scales in EFT

The EFT provides a model-independent framework for describing $0\nu\beta\beta$ decay.

ground state of initial nucleus

JMYao

The basic idea of current efforts:

- Indentify the active dof at the nuclear energy scale: N, π, (e, ν)
- Write down all possible contributions to both nuclear force and transition operators according to a power counting rule, $(Q, m_{\pi})/\Lambda_{\chi}$.
- Carry out a quantum many-body calculation and compute the NME.

The $0\nu\beta\beta$ decay operators in the chiral EFT

• At $E \sim 100$ MeV: operators are expressed in terms of nucleons, pions, and leptons, arranged in the order $(Q, m_{\pi}/\Lambda_{\chi})^{\nu}$,

$$\nu = 2A + 2L - 2 + \sum_{i} (\frac{n_f}{2} + d - 2 + n_e)_i$$

JMYao

• Non-relativistic chiral 2N+3N interactions (Weinberg power counting and others)

K. Hebeler, Phys. Rep. 890, 1 (2020)

• Relativistic chiral 2N interaction (up to N²LO, different PC from the NR case)

J.-X. Lu et al., PRL128, 142002 (2022)

A novel ab initio framework for nuclei: IM-GCM

The Framework of IM-GCM

- In-medium similarity renormalization group (IMSRG): capture dynamic correlations associated with high-energy few-particle, few- hole excitations
- **Projected generator coordinate method (PGCM)**: include the collective (static) correlations associated with pairing and deformation.

JMYao 10 / 26

The NME in the lightest candidate nucleus ⁴⁸Ca

 Multi-reference in-medium generator coordinate method (IM-GCM)

JMY et al., PRL124, 232501 (2020)

• Valence-space shell model+IMSRG (VS-IMSRG)

A. Belley et al., PRL126, 042502 (2021)

• Coupled-cluster with singlets, doublets, and partial triplets (CCSDT1).

JMYao

Contribution of the contact transition operator

学中山大学 SUN YAT-SEN UNIVERSITY

- The contact transition operator could either enhance or quench the $0\nu\beta\beta$ decay of cadidate nuclei.
- The LEC g_{ν}^{NN} consistent with the employed chiral interaction (EM1.8/2.0) is determined based on the synthetic data.
- The contact term turns out to enhance the NME for ⁴⁸Ca by 43(7)%, thus reducing the half-life $T_{1/2}^{0\nu}$ significantly.

R. Wirth, JMY, H. Hergert, PRL127, 242502 (2021)

The true value of the NME can be written as

$$M^{0\nu} = M_k^{0\nu} + \epsilon_{\chi \rm EFT} + \epsilon_{\rm MBT} + \epsilon_{\rm OP} + \epsilon_{\rm EM},$$

where the posterior probability distribution (PPD) of an LEC sample to yield results for a set of calibration observables that match experimental data

$$PPD = \{ M_k^{0\nu}(\mathbf{c}) : \mathbf{c} \sim \mathcal{P}(\mathbf{c} | \text{calibration}) \}.$$

from which one finds the statistical error $\chi_{
m LEC}$,

- $\epsilon_{\chi \rm EFT}$: chiral expansion truncation on nuclear forces
- $\epsilon_{\rm MBT}$: approximation in many-body methods
- ϵ_{OP} : chiral expansion truncation on transition operators
- $\epsilon_{\rm EM}$: the error of the emulator

All the errors $\boldsymbol{\epsilon}$ are assumed to be normally distributed and mutually independent.

Quantifying the error of EFT truncation on nuclear forces

- The NME converges with respect to the chiral expansion order χ of nuclear forces for candidate nuclei ⁴⁸Ca and ⁷⁶Ge.
- The EFT truncation error (evaluated using the BUQEYE method) is shrinking with $\chi.$

Quantifying the error of EFT truncation on transition operators 100 中山大学

- In the N2LO, we choose $\mu_{us} = m_{\pi}$ to eliminate all the terms depending on $\ln \frac{m_{\pi}^2}{\mu_{us}^2}$, and the LECs of the counterterms as $g_{\nu}^{\pi\pi} = -7.6 (36/5) \ln(\mu/m_{\rho})$, and $g_{\nu}^{\pi N} = 0$. V. Cirigliano, et al., PRC97, 065501 (2018)
- The NME for ⁷⁶Ge converges with respect to the chiral expansion order of transition operators.

Quantification of the uncertainty in the NME of ⁷⁶Ge

- Our recommended value $M^{0\nu} = 2.60^{+1.28}_{-1.36}$.
- Together with the best half-life limit: $> 1.8 \times 10^{26}$ yr, it sets the upper limit $\langle m_{\beta\beta} \rangle = 187^{+205}_{-62}$ meV, and the sensitivity of the next-generation experiment $\langle m_{\beta\beta} \rangle = 22^{+24}_{-7}$ meV, covering almost the entire range of IO hierarchy.

A. Belley, JMY et al., PRL132, 182502 (2024)

Summary and perspective

- 0νββ decay: only way to determine the nature of neutrinos, a complementary way to determine the absolute mass scale of neutrinos. The NMEs of candidate nuclei are crucial for designing and interpreting those experiments.
- Large uncertainty in NMEs: major systematical uncertainty, impacting the interpretation of the measurements.
- Remarkable progress in ab initio studies of NMEs: development of a novel ab initio method for candidate nuclei, disclosing non-trivial contributions from high-energy light neutrinos, and rapid convergence w.r.t. the chiral expansion order, a comprehensive uncertainty quantification.

What's next?

- The NMEs of heavier candidates ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe, with reduced uncertainty by considering higher-order nuclear interactions, reducing many-body truncation errors, and finding more constraints to shrink the uncertainty.
- Contributions from non-standard mechanisms.

Acknowledgements

Collaborators

SYSU

C.R. Ding, Q.Y. Luo, C.F. Jiao, C.C. Wang, G. Li, X. Zhang, E.F. Zhou

• PKU

L. S. Song, J. Meng, P. Ring, Y. K. Wang, P. W. Zhao

- LZU: Y.F. Niu
- CAEP: B.N. Lv

- SWU: L.J. Wang
- MSU: S. Bogner, H. Hergert, R. Wirth
- UNC: J. Engel, A. M. Romero
- TRIUMF: A. Belly, J. Holt
- TU Darmstadt: T. Miyagi
- Notre-Dame U: R. Stroberg
- UAM: B. Bally, T.Rodriguez

This work is supported in part by the National Natural Science Foundation of China (Grant Nos. 12141501 and 12275369), the Guangdong Basic and Applied Basic Research Foundation (2023A1515010936).

Thank you for your attention!

Transition operators in chiral EFT

0

correction to current and
induced weak-magnetism
$$g_V(q^2) = g_V(0) \left(1 + q^2/\Lambda_V^2\right)^{-2},$$

 $g_A(q^2) = g_A(0) \left(1 + q^2/\Lambda_A^2\right)^{-2}.$
 $h_{\text{GT,0}}^{\text{N2LO}}(q^2) = g_M^2(q^2) \frac{1}{6} \frac{q^2}{m_p^2},$
 $h_{\text{T,2}}^{\text{N2LO}}(q^2) = g_M^2(q^2) \frac{1}{12} \frac{q^2}{m_p^2},$

$$\begin{array}{l} \text{oop diagrams} \\ \text{od} \\ \\ \text{O}_{\text{NDLOGT}}^{PQ} = \frac{4}{3\pi m_{\pi}^{2}T^{2}} \int q^{4}dqj_{0}(qr) \Big(K_{VV}(\bar{q}) - K_{AA}(\bar{q}) \\ & -\frac{2g_{\pi}^{2}m_{\pi}^{2}}{q^{2} + m_{\pi}^{2}} \ln \frac{m_{\pi}^{2}}{q^{2} + m_{\pi}^{2}} \int q^{2}dqj_{0}(qr) \Big(K_{VV}(\bar{q}) - K_{AA}(\bar{q}) \\ & -\frac{2g_{\pi}^{2}m_{\pi}^{2}}{q^{2} + m_{\pi}^{2}} \ln \frac{m_{\pi}^{2}}{q^{2} - K_{CT}(\bar{q})} \Big) \mathbf{r}_{1} \cdot \sigma_{2}, \\ \text{with } \tilde{q} = q^{2}/m_{\pi}^{2}, T = 4\pi f_{\pi}, \text{ and } L_{\pi} = \ln \frac{\mu}{m_{\pi}^{2}}, \\ K_{VV}(\bar{q}) = \frac{2(1 - \bar{q})^{2}}{q^{2}(1 + \bar{q})} \ln(1 + \bar{q}) - \frac{2}{\bar{q}} + \frac{7 - 3\bar{q}L_{\pi}}{(1 + \bar{q})^{2}} + \frac{L_{\pi}}{1 + \bar{q}}, \\ K_{AA}(\bar{q}) = \frac{g^{A}}{1 + \bar{q}} (L_{\pi} - 4) + \frac{1}{(1 + \bar{q})^{2}}, \\ K_{AA}(\bar{q}) = \frac{g^{A}}{1 + \bar{q}} (L_{\pi} - 4) + \frac{1}{(1 + \bar{q})^{2}}, \\ K'_{AA}(\bar{q}) = \frac{1}{g^{A}_{A}} \Big[-\frac{3}{4} \left(1 - g^{A}_{A}\right)^{2} L_{\pi} + g^{A}_{A}f_{A}(\bar{q}) + g^{A}_{A}f_{2}(\bar{q}) \\ & + f_{0}(\bar{q}) + 24g^{A}_{A}f_{\pi}^{2}C_{T} (L_{\pi} + 1) \Big], \\ K_{CT}(\bar{q}) = \frac{5}{6}g^{\pi\pi}_{\nu} \frac{\bar{q}}{(1 + \bar{q})^{2}} - g^{\pi N}_{\nu} \frac{1}{1 + \bar{q}}. \end{array} \right]$$

VS-IMSRG method for $0 u\beta\beta$ decay of heavier candidates

The ab initio VS-IMSRG method is applied to study the NMEs of heavier candidates:

- For ¹³⁰Te, $M_{L+S}^{0
 u} \in [1.52, 2.40]$
- For 136 Xe, $M^{0
 u}_{L+S} \in [1.08, 1.90]$

The uncertainty is composed of different sources: nuclear interaction, reference-state, basis extrapolation, closure approximation, and the LEC for the short-range transition operators. The values are generally smaller than those from phenomenological nuclear models.

A more comprehensive quantification analysis

different nuclear many-body solvers, convergence of NMEs with chiral expansion orders, etc.

A. Belley et al, arXiv:2307.15156 (2023)

Preprocessing the nuclear potential with SRG

 Apply unitary transformations to decouple high and low-momentum states

$$H_s = U_s H U_s^{\dagger} \equiv T_{\rm rel} + V_s$$

from which one finds the flow equation

$$\frac{dH_s}{ds} = [\eta_s, H_s], \quad \eta_s = [T_{\rm rel}, H_s]$$

Evolution of the potential

The flow parameter s is usually replaced with $\lambda = s^{-1/4}$ in units of fm⁻¹ (a measure of the spread of off-diagonal strength).

$$\frac{dV_{s}(k,k')}{ds} = -(k^{2} - k'^{2})V_{s}(k,k') + \frac{2}{\pi}\int_{0}^{\infty}q^{2}dq(k^{2} + k'^{2} - 2q^{2})V_{s}(k,q)V_{s}(q,k')$$

$$\frac{dV_{s}(k,k')}{ds} = -(k^{2} - k'^{2})V_{s}(k,k') + \frac{2}{\pi}\int_{0}^{\infty}q^{2}dq(k^{2} + k'^{2} - 2q^{2})V_{s}(k,q)V_{s}(q,k')$$

Preprocessing the nuclear potential with SRG

- The hard core "disappears" in the SRG softened interactions
- Induced higher-body interactions: $3N, \cdots$
- S. K. Bogner et al. PPNP (2010); Wendt et al. PRC (2012)

• Apply unitary transformations to *H* in the configuration space

$$\hat{H}(s)=\hat{U}(s)\hat{H}_{0}\hat{U}^{\dagger}(s)$$

Flow equation

 $\frac{d\hat{H}(s)}{ds} = [\hat{\eta}(s), \hat{H}(s)]$

- Generator η(s): chosen either to decouple a given reference state from its excitations or to decouple the valence space from the excluded spaces.
- Not necessary to construct the whole *H* matrix in the config. space.

H. Hergert et al., Phys. Rep. 621, 165 (2016); S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019)

- The long-range part of the NME is sensitive to the LEC C_{1S_0} .
- The phase shift of the ${}^{1}S_{0}$ channel is linearly correlated to the NME.
- The neutron-proton phase-shift δ_{np}^{1S0} at 50 MeV is used to weight the samples.

Research plans on the measurements of $0\nu\beta\beta$ decays in China O

Isotope	$G_{0\nu}$	$M^{0 u}(\chi { m EFT})$	$T_{1/2}^{0\nu}$	$\langle m_{\beta\beta} \rangle$	Worldwide Exps	Inside China
	$[10^{-14} \text{ yr}^{-1}]$	[min, max]	[yr]	[meV]	current best limits	
76Ge	0.24	$2.60^{+1.27}_{-1.36}$	$> 1.8\cdot 10^{26}$	187^{+205}_{-62}	GERDA: PRL125, 252502(2020)	CDEX
82Se	1.01		$>4.6\cdot10^{24}$		CUPID-0: PRL129, 111801 (2023)	NvDEx
¹⁰⁰ Mo	1.59		$> 3.0 \cdot 10^{24}$		AMoRE: arXiv:2407.05618 [nucl-ex] (2024)	CPUID-China
¹³⁰ Te	1.42	[1.52, 2.40]	$>2.2\cdot10^{25}$	[236, 373]	CUORE: Nature 604, 53(2022)	JUNO
¹³⁶ Xe	1.46	[1.08, 1.90]	$>2.3\cdot10^{26}$	[91, 160]	KamLAND-Zen: PRL130, 051801(2023)	PANDAX

The magic chiral NN+3N interaction

The "magic" interaction EM1.8/2.0: The NN (N³LO: D.R. Entem, R. Machleidt, PRC68 041001 (2003)) and local 3N interactions (N²LO: K. Hebeler et al., PRC63, 031301(R) (2011)).

The LECs of the 3N are fitted on top of the SRG evolved NN interaction.

TABLE I. Results for the c_0 and c_{ξ} couplings fit to $E_{11g} = 8.482$ MeV and to the point charge radius $r_{01g} = 1.464$ fm (based on Ref. [26]) for the NN/3N cutoffs and different EM/EM/IPMA c_i values used. For μ_{01g} (SRG) interactions, the 3NF fits lead to $E_{11g} = -28.27$. $\nu_{-\mu_{01g}}$ (SRG) interactions, the 3NF fits lead to $E_{11g} = -28.27$. $\nu_{-\mu_{01g}}$ (SRG) (S

	$V_{\rm k}$	w k	SRG	
$\Lambda \text{ or } \lambda / \Lambda_{3NF} \text{ (fm)}$	c_D	c_E	c_D	c_E
1.8/2.0 (EM c _i 's)	+1.621	-0.143	+1.264	-0.120
2.0/2.0 (EM c _i 's)	+1.705	-0.109	+1.271	-0.131
$2.0/2.5$ (EM c_i 's)	+0.230	-0.538	-0.292	-0.592
$2.2/2.0$ (EM c_i 's)	+1.575	-0.102	+1.214	-0.137
$2.8/2.0$ (EM c_i 's)	+1.463	-0.029	+1.278	-0.078
2.0/2.0 (EGM c _i 's)	-4.381	-1.126	-4.828	-1.152
2.0/2.0 (PWA c _i 's)	-2.632	-0.677	-3.007	-0.686

C. Drischler et al., PRL122, 042501 (2019)

The saturation properties are not well reproduced.