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Effective action of chiral EFT in curved spacetame

Gravitational Form Factors (GFFs) of hadrons characterize their
internal structure.

They parameterize one-particle matrix elements of EMT operator.

GFFs cannot be directly measured in experiments.

However they can be accessed indirectly in processes like DVCS.

GFFs can be calculated in lattice QCD.

For small momentum transfers Chiral EFT can be used.

I will talk about nucleon, although the delta resonances and vector
mesons have been also studied.



J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343 (1991),
H. Alharazin, at al. Phys. Rev. D 102, 076023 (2020).

Action of pions and nucleons in curved spacetime:

Sπ =

∫
d4x

√
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F 2
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ab⟨F+
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gµν and eµ
a are the metric and vielbein fields.

The building blocks:

∇µΨ = ∂µΨ+
i
2
ωab
µ σabΨ+

(
Γµ − iv (s)

µ

)
Ψ,

∇µΨ̄ = ∂µΨ̄− i
2
Ψ̄σab ω

ab
µ − Ψ̄

(
Γµ − iv (s)

µ

)
,

Γµ =
1
2

[
u†∂µu + u∂µu† − i(u†vµu + uvµu†)

]
,

ωab
µ = −gνλea

λ

(
∂µeb

ν − eb
σΓ

σ
µν

)
,

Γλαβ =
1
2

gλσ (∂αgβσ + ∂βgασ − ∂σgαβ) ,

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ ,

R = gµνRλ
µλν ,



uµ = i
[
u†∂µu − u∂µu† − i(u†vµu − uvµu†)

]
,

F+
µν = u†FRµνu + uFLµνu† ,

FRµν = ∂µrν − ∂νrµ − i[rµ, rν ] ,
FLµν = ∂µlν − ∂ν lµ − i[lµ, lν ] ,
χ+ = u†χu† + uχ†u ,

χ̂+ = χ+ − 1
2
⟨χ+⟩ ,

χ = 2B0(s + ip), DµU = ∂µU − irµU + iUlµ,
U = u2 represents the pion fields,
B0 is related to the vacuum condensate of quark fields,
s, p, lµ, rµ and v (s)

µ are external sources.



Energy-momentum-tensor

Using the definition of the EMT for bosonic matter fields

Tµν(g, ψ) =
2√
−g

δSm

δgµν
,

we obtain in flat spacetime

T (π)
µν =

F 2

4
Tr(DµU(DνU)† + DνU(DµU)†)

− ηµν

{
F 2

4
Tr(DαU(DαU)†) +

F 2

4
Tr(χU† + Uχ†)

}
,

where ηµν is the Minkowski metric tensor.



For the fermion fields we use

Tµν(g, ψ) =
1

2e

[
δS
δeaµ ea

ν +
δS
δeaν ea

µ

]
,

where e is the determinant of ea
µ, and obtain in flat spacetime:

T (πN)
µν =

i
4
(
Ψ̄ γµDνΨ+ Ψ̄ γνDµΨ− DµΨ̄ γνΨ− DνΨ̄ γµΨ

)
+

gA

4
(
Ψ̄ γµγ5uνΨ+ Ψ̄ γνγ5uµΨ

)
· · ·

+
c8

4
(ηµν∂

2 − ∂µ∂ν)Ψ̄Ψ

+
ic9

2m
(ηµαηνβ∂

2 + ηµν∂α∂β − ηµα∂ν∂β − ηνα∂µ∂β)

×
(
Ψ̄γαDβΨ− DβΨ̄γαΨ+ Ψ̄γβDαΨ− DαΨ̄γβΨ

)
,

where

DµΨ = ∂µΨ+
(
Γµ − iv (s)

µ

)
Ψ,

DµΨ̄ = ∂µΨ̄− Ψ̄
(
Γµ − iv (s)

µ

)
.



Gravitational form factors of the nucleon

At chiral order four there are tree and one-loop contributions to the
nucleon matrix element of the EMT.

a) b) c) d) e) f ) g)

Figure: Diagrams contributing to GFFs of the nucleon. Solid and dashed
lines correspond to nucleons and pions. Crosses stand for EMT insertions.



Standard power counting rules apply to these diagrams:
▶ The pion lines count as of chiral order minus two;
▶ The nucleon lines have order minus one;
▶ Interaction vertices originating from the effective Lagrangian of

order N count also as of chiral order N;
▶ Vertices generated by EMT have orders corresponding to the

number of quark mass factors and derivatives acting on the
pion fields.

▶ The momentum transfer between the initial and final nucleons
counts as of chiral order one.

▶ Integration over loop momenta is counted as of chiral order four.

Power counting is realized only after an appropriate renormalization.



M. V. Polyakov, P. Schweitzer, Int. J. Mod. Phys. A 33, 26, 1830025 (2018).
The one-nucleon matrix element of the EMT is parameterised as

⟨pf , sf |Tµν |pi , si⟩ = ū(pf , sf )

[
A(t)

PµPν

mN

+iJ(t)
Pµσνα∆

α + Pνσµα∆
α

2mN
+ D(t)

∆µ∆ν − ηµν∆
2

4mN

]
u(pi , si) ,

(pi , si) and (pf , sf ) are momentum and polarization of incoming and
outgoing nucleons, and P = (pi + pf )/2, ∆ = pf − pi , t = ∆2.

Tree-order diagrams up to chiral order four lead to

Atree(t) = 1 − 2c9

mN
t + x1M2

π t + x2t2 ,

Jtree(t) =
1
2
− c9

mN
t ,

Dtree(t) = c8mN + y1t + y2M2
π . (1)

yi and xi are contributions of the third and fourth order Lagrangians.



We renormalize loop diagrams by applying the EOMS scheme
J. G. and G. Japaridze, Phys. Rev. D 60, 114038 (1999),
T. Fuchs, J. G., G. Japaridze, S. Scherer, Phys. Rev. D 68, 056005 (2003).

Power counting breaking (PCB) part of A(t) is absorbed into c9.

c8 cancels the divergent part and the PCB piece of D(t).

D(0) expanded in powers of the pion mass:

D(0)
mN

= c8 +
g2

A
16πF 2 Mπ +

2 (c2 + 2c3 − 4c1)−
3g2

A
mN

8π2F 2 M2
π ln

(
Mπ

mN

)

+
(8c3 − 16c1)− g2

A

(
3c8 +

14
mN

)
32π2F 2 M2

π +
y2

mN
M2

π +O(M3
π) .



GFFs A(t), J(t) and D(t) are related spatial densities.

M. V. Polyakov, Phys. Lett. B 555, 57 (2003),
M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33, 1830025 (2018),

Behavior of densities in the region 1/Λstrong ≪ r ≪ 1/Mπ can be
obtained from GFFs for small t in chiral limit:

ρE(r) =
9g2

A
64π2F 2

1
r6−

3
(
10g2

A/mN + (c2 + 10c3)
)

16π3F 2
1
r7 + O

(
1
r8

)
,

ρJ(r) =
5g2

A
64π3F 2

1
r5 −

9g2
A

64π2F 2mN

1
r6 + O

(
1
r7

)
,

p(r) = −
3g2

A
64π2F 2

1
r6+

(
5g2

A/mN + 4 (c2 + 5c3)
)

16π3F 2
1
r7 + O

(
1
r8

)
,

s(r) =
9g2

A
64π2F 2

1
r6−

21
(
5g2

A/mN + 4 (c2 + 5c3)
)

128π3F 2
1
r7 + O

(
1
r8

)
.



Problem of defining spatial densities

Charge density of a nucleon is traditionally defined as Fourier
transform of the electric FF in the Breit frame.

R. Hofstadter, F. Bumiller, and M. R. Yearian, Rev. Mod. Phys. 30, 482
(1958).
F. J. Ernst, R. G. Sachs and K. C. Wali, Phys. Rev. 119, 1105-1114 (1960).
R. G. Sachs, Phys. Rev. 126, 2256-2260 (1962).

Similar relations have been suggested for Fourier transforms of
GFFs and various local distributions in

M. V. Polyakov and A. G. Shuvaev, [arXiv:hep-ph/0207153 [hep-ph]].
M. V. Polyakov, Phys. Lett. B 555, 57 (2003).
M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) no.26,
1830025.



This definition of spatial densities was criticized in

M. Burkardt, Phys. Rev. D 62 (2000), 071503(R), [erratum: Phys. Rev. D
66 (2002), 119903(E)].
G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).
G. A. Miller, Phys. Rev. C 79, 055204 (2009).
G. A. Miller, Ann. Rev. Nucl. Part. Sci. 60 (2010), 1-25.
R. L. Jaffe, Phys. Rev. D 103 (2021) no.1, 016017.
G. A. Miller, Phys. Rev. C 99, no.3, 035202 (2019).
A. Freese and G. A. Miller, Phys. Rev. D 103, 094023 (2021).

One-sentence summary:
Interpretation of the Fourier transformed FFs as charge densities is
not valid for systems with ∆ ∼ 1/m.



Spatial densities defined via sharply localized states:

E.Epelbaum, J.G., N.Lange., U.-G.Meißner., M.V.Polyakov,
Phys. Rev. Lett. 129, 012001 (2022).

J.Y.Panteleeva, E.Epelbaum, J.G., U.-G.Meißner,
Phys. Rev. D 106, no.5, 056019 (2022).

H. Alharazin, B.-D. Sun, E. Epelbaum, J. G., U.-G. Meißner,
JHEP 02, 163 (2023).

J.Y.Panteleeva, E.Epelbaum, J.G., U.-G.Meißner,
Eur. Phys. J. C 83, no.7, 617 (2023).

We use spherically symmetric wave packets, and consider ZAMF.



Localized states

We use normalizable Heisenberg-picture states:

|Φ,X, s⟩ =
∫

d3p√
2E(2π)3

ϕ(s,p)e−ip·X|p, s⟩, (2)

where X is the position of the system, and |p, s⟩ are normalized as

⟨p′, s′|p, s⟩ = 2E(2π)3δs′s δ
(3)(p′ − p) , p = (E ,p) . (3)

Profile function ϕ(s,p) = ϕ(p) = ϕ(|p|) corresponds to ZAMF and:∫
d3p |ϕ(s,p)|2 = 1 . (4)

It is convenient to define dimensionless profile functions

ϕ(p) = R3/2 ϕ̃(Rp) , (5)

Sharp localizations of the system correspond to small R.



EMT spatial densities

EMT matrix element of a spin-1/2 system:

tµνϕ (r) = ⟨Φ,0|T̂µν(r,0)|Φ,0⟩

=

∫
d3P d3q

(2π)3
√

4EE ′
ū(p′, s′)

[
A(q2)

PµPν

m

+iJ(q2)
Pµσναqα + Pνσµαqα

2m
+ D(q2)

qµqν − gµνq2

4m

]
u(p, s)

×ϕ
(

P − q
2

)
ϕ⋆

(
P +

q
2

)
e−iq·(r) . (6)

where q = p′ − p, P = (p′ + p)/2, and the Dirac spinors are
normalized as ū(p, s′)u(p, s) = 2m δs′s.



Static approximation is obtained by expanding the integrand in 1/m
and taking R → 0 limit.

This can be done without specifying F
(
q2) and ϕ(p) using the

method of dimensional counting

J.G., G.Japaridze, K.Turashvili, Theor. Math. Phys. 101, 1313 (1994).

t00
naive(r) = m

∫
d3q
(2π)3 A

(
−q2

)
e−iq·r,

t0i
naive(r) = − i

2
ϵijkσk

∫
d3q
(2π)3 qjJ

(
−q2

)
e−iq·r,

t ij
ϕ,naive(r) =

1
R2

∫
dP̃P̃4|ϕ̃(P̃)|2 4π δij

3m

∫
d3q
(2π)3 A

(
−q2

)
e−iq·r

+
1

4m

∫
d3q
(2π)3 D

(
−q2

) (
−q2δij + qiqj

)
e−iq·r ,

The t00
naive, t0i

naive and the second term of t ij
ϕ,naive coincide with spatial

densities in the Breit frame.



EMT matrix element for sharply localized states, i.e. in R → 0 limit:

tµνϕ (r) = Nϕ,R

∫
d2 ˆ̃P d3q
(2π)3

[
i

2m

(
ˆ̃Pµ(σ⊥ × q)ν + ˆ̃Pν(σ⊥ × q)µ

+ ˆ̃P · (σ⊥ × q)(δµ0 ˆ̃Pν + δν0 ˆ̃Pµ)
)

J
(
−q2

⊥

)
+ˆ̃Pµ ˆ̃PνA

(
−q2

⊥

)]
e−iq·r

+
1
2

Nϕ,R,2

∫
d2 ˆ̃P d3q
(2π)3

(
q̃µq̃ν + gµνq2

⊥

)
D
(
−q2

⊥

)
e−iq·r ,

where (σ⊥ × q)0 = 0, q̃µ = (ˆ̃P · q,q), P̃µ = (P̃, P̃), ˆ̃Pµ =
(

1, P̃
P̃

)
,

P̃ = |P̃|, q⊥ = ˆ̃P ×
(

q × ˆ̃P
)

, q2
⊥ ≡ −q̃2 and

Nϕ,R =
1
R

∫
dP̃P̃3|ϕ̃(|P̃|)|2 ,

Nϕ,R,2 =
R
2

∫
dP̃P̃|ϕ̃(|P̃|)|2 .



Interpretation

In sharply localized states t00(r) and t0i(r) can be interpreted as
energy and momentum spatial distributions, respectively.

Breit frame expressions correspond to systems in ZAMF in states
with packets much larger than 1/m.

Such packet is dominated by states with E ≈ m, and therefore t00(r)
can be interpreted in this case as the spatial distribution of the mass.



t̄ ij
2(s

′, s, r) =
1
2

Nϕ,R,2 δs′s

∫
d2n̂ d3q
(2π)3

(
qiqj − δijq2

⊥

)
D
(
−q2

⊥

)
e−iq·r

t ij
2,naive(r) =

1
4m

∫
d3q
(2π)3

(
qiqj − δijq2

)
D
(
−q2

)
e−iq·r ,

t ij
2 is interpreted as characterizing the distribution of internal forces.

t ij
2(r) =

(
r i r j

r2 − 1
3
δij
)

s(r) + δijp(r) ,

s(r) and p(r) are shear force and the pressure, respectively.

M. V. Polyakov, Phys. Lett. B 555, 57 (2003). [hep-ph/0210165].
M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) no.26,
1830025. [arXiv:1805.06596 [hep-ph]].



The dependence of spatial density on F (−q2
⊥) rather than on

F (−q2) affects the radial profile of the charge density.

Demonstration

We compare ρ(r) and ρnaive(r) for a charged and a neutral particles.

We employ form factors

Fp(q2) = (1 − q2/Λ2)−2

with Λ2 = 0.71 GeV2,

and

Fn(q2) = Aτ/(1 + Bτ) (1 − q2/Λ2)−2,

where τ = −q2/(4m2
p), A = 1.70, B = 3.30.
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Figure: Radial charge density distributions 4πr2ρ(r) (solid lines) and
4πr2ρnaive(r) (dashed lines) for a charged and a neutral particles.



Summary
▶ Presented the effective chiral Lagrangian of pions and nucleons

up to the second chiral order in curved spacetime.
▶ Derived the corresponding EMT of pions and nucleons in flat

spacetime.
▶ Calculated the the one-nucleon matrix element of the EMT at

fourth chiral order and extracted the GFFs.
▶ We introduced an unambiguous definition of spatial distributions

of expectation values of local operators via localized states.
▶ New definition also applies to systems independently on the

Compton wavelength.
▶ In case of EMT and gravitational FFs the static approximation

leads to spatial densities obtained from FFs in Breit frame.

Sharply localized states lead to analogous but different results.
▶ Our results suggest ⟨r2⟩ = 4A′(0) in contrast to the usual Breit

frame expression ⟨r2⟩naive = 6A′(0).


