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Effective action of chiral EFT in curved spacetame

Gravitational Form Factors (GFFs) of hadrons characterize their
internal structure.

They parameterize one-particle matrix elements of EMT operator.
GFFs cannot be directly measured in experiments.

However they can be accessed indirectly in processes like DVCS.
GFFs can be calculated in lattice QCD.

For small momentum transfers Chiral EFT can be used.

| will talk about nucleon, although the delta resonances and vector
mesons have been also studied.



J. F. Donoghue and H. Leutwyler, Z. Phys. C 52, 343 (1991),
H. Alharazin, at al. Phys. Rev. D 102, 076023 (2020).

Action of pions and nucleons in curved spacetime:
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g"” and e} are the metric and vielbein fields.
The building blocks:
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x = 2By(s+ ip), DU = 0,U — ir, U+ iUl,,
U = u? represents the pion fields,
By is related to the vacuum condensate of quark fields,

s, p, l,, r, and vff) are external sources.



Energy-momentum-tensor

Using the definition of the EMT for bosonic matter fields

2 46§
Tu(9,¢) = — ——
(9, 1)) =g og
we obtain in flat spacetime
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where 7, is the Minkowski metric tensor.



For the fermion fields we use
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where e is the determinant of e}, and obtain in flat spacetime:
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Gravitational form factors of the nucleon

At chiral order four there are tree and one-loop contributions to the
nucleon matrix element of the EMT.
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Figure: Diagrams contributing to GFFs of the nucleon. Solid and dashed
lines correspond to nucleons and pions. Crosses stand for EMT insertions.



Standard power counting rules apply to these diagrams:
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The pion lines count as of chiral order minus two;
The nucleon lines have order minus one;

Interaction vertices originating from the effective Lagrangian of
order N count also as of chiral order N;

Vertices generated by EMT have orders corresponding to the
number of quark mass factors and derivatives acting on the
pion fields.

The momentum transfer between the initial and final nucleons
counts as of chiral order one.

Integration over loop momenta is counted as of chiral order four.

Power counting is realized only after an appropriate renormalization.



M. V. Polyakov, P. Schweitzer, Int. J. Mod. Phys. A 33, 26, 1830025 (2018).
The one-nucleon matrix element of the EMT is parameterised as
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(pi, si) and (pr, s¢) are momentum and polarization of incoming and
outgoing nucleons, and P = (p; + pr)/2, A = ps — pj, t = AZ.

Tree-order diagrams up to chiral order four lead to

Atree(t) = 1 —@t+X1M$t+X2t2,
mn
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yi and x; are contributions of the third and fourth order Lagrangians.



We renormalize loop diagrams by applying the EOMS scheme
J. G. and G. Japaridze, Phys. Rev. D 60, 114038 (1999),

T. Fuchs, J. G., G. Japaridze, S. Scherer, Phys. Rev. D 68, 056005 (2003).
Power counting breaking (PCB) part of A(t) is absorbed into cg.
cg cancels the divergent part and the PCB piece of D(t).

D(0) expanded in powers of the pion mass:
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GFFs A(t),J(t) and D(t) are related spatial densities.

M. V. Polyakov, Phys. Lett. B 555, 57 (2003),
M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33, 1830025 (2018),

Behavior of densities in the region 1/Agyone < r < 1/M; can be
obtained from GFFs for small ¢ in chiral limit:

993 1 3(1095/mn+ (c2+10c3)) 1 1
pell) = GareFere 1673 F2 CARAVIR
597 1 992 1 1
py(r) = 362 5 2F2m. 16 w7 )0
64m3F2r 64m2Femy r r
B 3g5 1 (5g3/mn+4(c:+5¢c3)) 1 1
N 16m3F2 7 9\e)

;
995 1 21 (5g3/mn +4(c +5¢)) l+O 1
64712F2 ré 128713 F2 r’ )




Problem of defining spatial densities

Charge density of a nucleon is traditionally defined as Fourier
transform of the electric FF in the Breit frame.

R. Hofstadter, F. Bumiller, and M. R. Yearian, Rev. Mod. Phys. 30, 482
(1958).
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R. G. Sachs, Phys. Rev. 126, 2256-2260 (1962).
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GFFs and various local distributions in
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This definition of spatial densities was criticized in

M. Burkardt, Phys. Rev. D 62 (2000), 071503(R), [erratum: Phys. Rev. D
66 (2002), 119903(E)].

G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).

G. A. Miller, Phys. Rev. C 79, 055204 (2009).

G. A. Miller, Ann. Rev. Nucl. Part. Sci. 60 (2010), 1-25.
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One-sentence summary:
Interpretation of the Fourier transformed FFs as charge densities is
not valid for systems with A ~ 1/m.



Spatial densities defined via sharply localized states:

E.Epelbaum, J.G., N.Lange., U.-G.Meif3ner., M.V.Polyakov,
Phys. Rev. Lett. 129, 012001 (2022).

J.Y.Panteleeva, E.Epelbaum, J.G., U.-G.MeiBner,
Phys. Rev. D 106, no.5, 056019 (2022).

H. Alharazin, B.-D. Sun, E. Epelbaum, J. G., U.-G. Meif3ner,
JHEP 02, 163 (2023).

J.Y.Panteleeva, E.Epelbaum, J.G., U.-G.MeiBner,
Eur. Phys. J. C 83, no.7, 617 (2023).

We use spherically symmetric wave packets, and consider ZAMF.



Localized states

We use normalizable Heisenberg-picture states:

|®,X, s PX|p,s), (2)

3
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where X is the position of the system, and |p, s) are normalized as
(0, s'Ip, s) = 2E(2m)3655 63 (p' —p),  p=(E,p). (3)
Profile function ¢(s,p) = ¢(p) = ¢(|p|) corresponds to ZAMF and:
| &plots.p)=1. @
It is convenient to define dimensionless profile functions

¢(p) = R*2$(Rp), (5)

Sharp localizations of the system correspond to small R.



EMT spatial densities

EMT matrix element of a spin-1/2 system:
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where g =p' — p, P = (p’ + p)/2, and the Dirac spinors are
normalized as u(p, s')u(p, s) = 2mdgs.



Static approximation is obtained by expanding the integrand in 1/m
and taking R — 0 limit.

This can be done without specifying F (q2) and ¢(p) using the
method of dimensional counting

J.G., G.Japaridze, K. Turashvili, Theor. Math. Phys. 101, 1313 (1994).
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EMT matrix element for sharply localized states, i.e. in R — 0 limit:
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Interpretation

In sharply localized states t°°(r) and t°/(r) can be interpreted as
energy and momentum spatial distributions, respectively.

Breit frame expressions correspond to systems in ZAMF in states
with packets much larger than 1/m.

Such packet is dominated by states with £ ~ m, and therefore t%(r)
can be interpreted in this case as the spatial distribution of the mass.
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s(r) and p(r) are shear force and the pressure, respectively.

M. V. Polyakov, Phys. Lett. B 555, 57 (2003). [hep-ph/0210165].
M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) no.26,
1830025. [arXiv:1805.06596 [hep-phl]].



The dependence of spatial density on F(—q3 ) rather than on
F(—q?) affects the radial profile of the charge density.

Demonstration

We compare p(r) and pnaive(r) for a charged and a neutral particles.
We employ form factors

Fo(q?) = (1 - g°/N)~2

with A2 = 0.71 GeV?,

and

Fa(G?) = Ar/(1 + Br) (1 - ¢°/\%)72,

where 7 = —g?/(4m3), A= 1.70, B = 3.30.
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Figure: Radial charge density distributions 47r2?p(r) (solid lines) and
4712 praive (1) (dashed lines) for a charged and a neutral particles.



Summary
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Presented the effective chiral Lagrangian of pions and nucleons
up to the second chiral order in curved spacetime.

Derived the corresponding EMT of pions and nucleons in flat
spacetime.

Calculated the the one-nucleon matrix element of the EMT at
fourth chiral order and extracted the GFFs.

We introduced an unambiguous definition of spatial distributions
of expectation values of local operators via localized states.

New definition also applies to systems independently on the
Compton wavelength.

In case of EMT and gravitational FFs the static approximation
leads to spatial densities obtained from FFs in Breit frame.
Sharply localized states lead to analogous but different results.

Our results suggest (r?) = 4A’(0) in contrast to the usual Breit
frame expression (r?)paive = 6A'(0).



