Recent developments and applications of nuclear lattice EFT

吕炳楠 Bing-Nan Lu

中国工程物理研究院研究生院 Graduate School of China Academy of Engineering Physics

> 第九届手征有效场论研讨会 2024-OCT-19,长沙

Table of contents

- Lattice effective field theory
- First principles cal. I: Minimal effective interactions
- First principles cal. II: High-precision chiral forces
- Summary & Perspective

What is a nuclear EFT?

- Modern nuclear force constructions are based on the Effective Field Theory
- Theoretical foundation of EFT is the Wilsonian renormalization group:
 - High-momentum details can be integrated out & hidden in LECs
 - Low-momentum physics kept invariant under ren. group transformations

Lattice EFT: A many-body EFT solver

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing $a \approx 1 \text{ fm} = 620 \text{ MeV}$ (~chiral symmetry breaking scale)
- Protons & neutrons interacting via short-range, δ-like and long-range, pion-exchange interactions

• Exact method, polynomial scaling ($\sim A^2$)

[■]■ 核物理:2~300粒子系统,可能 找到严格解

Lattice EFT: A many-body EFT solver

Get *interacting g. s.* from imaginary time projection:

 $|\Psi_{g.s.}
angle \propto \lim_{ au
ightarrow \infty} \exp(- au H) |\Psi_A
angle$

with $|\Psi_A\rangle$ representing *A free* nucleons.

● Expectation value of any operator *O*:

$$\langle O
angle = \lim_{ au
ightarrow \infty} rac{\langle \Psi_A | \exp(- au H/2) \mathscr{O} \exp(- au H/2) | \Psi_A
angle}{\langle \Psi_A | \exp(- au H) | \Psi_A
angle}$$

τ is discretized into time slices:

$$\exp(- au H) \simeq \left[:\exp(-rac{ au}{L_t}H):
ight]^{L_t}$$

All possible configurations in $\tau \in [\tau_i, \tau_f]$ are sampled.

Complex structures like nucleon clustering emerges naturally.

Nuclear Force Problem

Nuclear Force Problem: Can the nuclear force calibrated with the N-N scattering and few-body data uniquely and correctly predict the structures of finite nuclei?

Table of contents

- Lattice effective field theory
- First principles cal. I: Minimal effective interactions
- First principles cal. II: High-precision chiral forces
- Summary & Perspective

Nuclear binding near a quantum phase transition

 $\oint E_A - E_{\alpha} A/4 = \frac{1}{a_{\alpha\alpha}} = 0$

1

*

Alpha gas

4

*

 $|a_{aa}| = \infty$

Nuclear liquid

λ

 $\lambda = 1$

- The nuclear force can be either local (position-dependent) or non-local (velocity-dependent).
- Locality is an essential element for nuclear binding.

Zeroth order Hamiltonian (perturbative order)

We use a zeroth order lattice Hamiltonian that respects the Wigner-SU(4) symmetry

$$H_0 = K + \frac{1}{2}C_{\mathrm{SU4}}\sum_{\boldsymbol{n}}: \tilde{
ho}^2(\boldsymbol{n}):$$

The smeared density operator $\tilde{\rho}(\boldsymbol{n})$ is defined as

$$\tilde{\rho}(\boldsymbol{n}) = \sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}) \tilde{a}_{i}(\boldsymbol{n}) + s_{L} \sum_{|\boldsymbol{n}'-\boldsymbol{n}|=1} \sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}') \tilde{a}_{i}(\boldsymbol{n}'), \qquad (1)$$

where *i* is the joint spin-isospin index

$$\tilde{a}_i(\boldsymbol{n}) = a_i(\boldsymbol{n}) + s_{NL} \sum_{|\boldsymbol{n}' - \boldsymbol{n}| = 1} a_i(\boldsymbol{n}').$$
(2)

In this work we use a lattice spacing a = 1.32 fm and the parameter set

Essential elements for nuclear binding

Charge density and neutron matter equation of state are impotant in element creation, neutron star merger, etc.

Lu, Li, Elhatisari, Lee, Epelbaum, Meissner, Phys. Lett. B 797 (2019) 134863

Applications of SU(4) lattice interaction

SU(4) interaction is sign-problem-free and can reproduce the bulk properties.

- Tomography of nuclear clustering Shi-Hang Shen et al., Nat. Commun. 14, 2777 (2023) ← 申时行's talk
- Ab initio nuclear thermodynamics Lu et al., Phys. Rev. Lett. 125, 192502 (2020)
- Ab initio study of nuclear clustering in hot medium Zheng-Xue Ren et al., Phys. Lett. B 850, 138463 (2024)

Nuclear binding energies with spin-orbit term (preliminary)

- Spin-orbit term is essential for shell evolutions. (proper SL term do not induce sign problem)
- SU(4) + SL Hamiltonian, **5 parameters** optimized with masses of ⁴He, ¹⁶O, ²⁴Mg, ²⁸Si, ⁴⁰Ca, etc.

- Average error for 76 even-even nuclei: 2.932 MeV
 Applicable to light/medium mass nuclei
 Zhong-Wang Niu et al., in preparation
 Can be viewed as an *ab initio* nuclear mass model
- Errors in other models
 - Relativistic mean field (PC-PK1): 2.258 MeV Peng-Wei Zhao et al., PRC82, 054319 (2010)
 - Non-rel. mean field (UNDEF1): 3.380 MeV Kortelainen et al., PRC 85, 024304 (2012).
 - Finite range droplet model: 1.142 MeV
 P. Moller et al., Atom. Data Nucl. Data Tables 109, 1 (2016)

Table of contents

- Lattice effective field theory
- First principles cal. I: Minimal effective interactions
- First principles cal. II: High-precision chiral forces
- Summary & Perspective

Contact term regulators

Boson exchange \implies model of short-distance physics

 \implies unresolved in chiral EFT (except for pion)

 \implies encoded in coefficients of contact terms

- Contact terms originate from heavy-meson exchanges
- Mesons with mass $m_H \gg \Lambda$ can be absorbed in δ -functions
- Choose an appropriate Λ satisfying $Q \ll \Lambda \ll m_H$

In momentum space, contact terms become **polynomials** of in & out momenta

- Incoming momenta: p_1 , p_2
- Outgoing momenta: p_1' , p_2'

Galilean invariance: V only depends on $p = (p_1 - p_2)/2, p' = (p'_1 - p'_2)/2$ Equivalently, V can also be expressed using q = p' - p, k = (p' + p)/2

Local regulator:

$$(\boldsymbol{p}',\boldsymbol{p}) \to V(\boldsymbol{p}',\boldsymbol{p})f_{\Lambda}(q)$$

Non-local regulator:

 $V(\mathbf{p}', \mathbf{p}) \rightarrow V(\mathbf{p}', \mathbf{p}) f_{\Lambda}(p') f_{\Lambda}(p)$ Single-particle regulator: $V(\mathbf{p}', \mathbf{p}) \rightarrow V(\mathbf{p}', \mathbf{p}) f_{\Lambda}(p_1') f_{\Lambda}(p_1) f_{\Lambda}(p_2') f_{\Lambda}(p_2)$

 $f_{\Lambda}(p) = \exp\left[-(p/\Lambda)^{2n}\right]$

 Λ is an **arbitrarily** introduced parameter corresponding to **no** physical reality.

Ren. Group vs. Similarity Ren. Group

- To answer the question on the self-consistency, we begin by building an inherently RG-invariant (Λ -independent) EFT
- We may use Wilsonian RG approach. However, integrating out the high-momentum modes result in time-dependent interactions that are difficult to handle in Hamiltonian formalism
- A more suitable choice is the **Similarity Renormalization Group (SRG)** method which involves unitary transformations of the Hamiltonian

Wisonian RG: Integrating out a momentum shell

 $Z = \int D\phi \exp[-S_0(\phi)] = \int \prod_{p < \Lambda} d\phi_{<} \prod_{\Lambda < p < \Lambda_0} d\phi_{>} \exp[-S_0(\phi_{<} + \phi_{>})] = \int \prod_{p < \Lambda} d\phi_{<} \exp[-S_{eff}(\phi_{<})]$ Similarity RG: Decoupling the low- and high-momentum subspaces via unitary transformations

$$H' = U^{-1}HU = U^{-1} \begin{pmatrix} H_{11} & H_{10} \\ H_{01} & H_{00} \end{pmatrix} U = \begin{pmatrix} H'_{11} & 0 \\ 0 & H'_{00} \end{pmatrix}$$

In Wilsonian RG the high-momentum modes are integrated into running coupling constants **Question: how to apply the SRG to generate the Wilsonian flow for a non-rel. Hamiltonian?** Lu & Deng, arXiv:2308.14559

Decoupling the low- and high-momenta

- We search for a unitary transformation that decouples the two subspaces space-0' and space-1'
- This can be achieved by applying a SRG transformation

 $i\partial_t H(t) = [\eta(t), H(t)]$ $\eta(t) = i[H_0(t), H_1(t)]$

- For sufficiently large *t*, the non-diagonal blocks contained in H1 are suppressed \rightarrow H1 vanishes
- Remember that H0 is block-diagonal in the Fock space, we can safely drop all terms containing $\delta\Phi$

$$H_{0} = \int d\tau : -\frac{\Phi^{\dagger}\nabla^{2}\Phi}{2m} + \frac{C_{2}}{2}(\Phi^{\dagger}_{\Lambda'}\Phi_{\Lambda'})^{2} + \frac{C_{3}}{6}(\Phi^{\dagger}_{\Lambda'}\Phi_{\Lambda'})^{3} + 2C_{2}(\Phi^{\dagger}_{\Lambda'}\Phi_{\Lambda'})(\delta\Phi^{\dagger}\delta\Phi) + C_{2}(\Phi^{\dagger}_{\Lambda'}\delta\Phi)(\delta\Phi^{\dagger}\delta\Phi) + \frac{3C_{3}}{2}(\Phi^{\dagger}_{\Lambda'}\Phi_{\Lambda'})^{2}\delta\Phi^{\dagger}\delta\Phi + \frac{C_{3}}{2}(\Phi^{\dagger}_{\Lambda'}\delta\Phi)^{2}\delta\Phi^{\dagger}\delta\Phi + \dots :$$

- Now we have a transformed Hamiltonian, $\Lambda \to \Lambda'$ and all coupling constants updated to new values
- As we used unitary transformations, new Hamiltonian has the same spectrum

Nuclear scattering and reaction

• The transformation is unitary and localized:

 $U(\infty)(|\phi_1\rangle \otimes |\phi_2\rangle) = U(\infty)|\phi_1\rangle \otimes U(\infty)|\phi_2\rangle$

with $\phi_{1,2}$ single- or many-particle wave packets separated by a distance $\gg \Lambda^{-1}$

- For a typical reaction, the incoming (outgoing) state long before (after) the collision consists of well seperated clusters, each of which corresponds to a bound state of the Hamiltonian.
- Applying the transformation U to both the Hamiltonian and the incoming (outgoing) state, we transform H to H' and the cluster wave functions from eigenvectors of H to that of H' with the same binding energies
- the unitarity of U ensures the invariance of the S-matrix element
- Similar to the wave-function-matching method Nature 630, 59-63 (2024)

All low-momentum physics are invariant under $\Lambda \rightarrow \Lambda'$ and calculating with new coupling constants (Renormalization Group Invariance)

Determination of the N2LO LECs

- For each value of Λ, We determine the coupling constants (LECs) by fitting to the N-N scattering phase shifts up to 200 MeV and ³H binding energy E3=-8.482 MeV
- We extrapolate to infinite box size to eliminate the finite volume effects
- All LECs are completely fixed in A<=3 systems

Role of Galilean invariance restoration terms (preliminary)

- The lattice itself is stationary and breaks the GR.
- Varying cutoff induces Galilean invariance breaking contact terms in the Hamiltonian.
- Such terms are irrelevant and disappear for large cutoffs.
- Inclusion of these terms improves the RG-invariance. Jia-Ai Shi et al., in preparation

Summary & Perspective

- Lattice Effective Field Theory is an efficient tool for solving the nuclear many-body problem. Nuclear force → Binding energies
- Two groups of lattice nuclear forces
 - Minimal nuclear forces with essential elements (locality, three-body, spin-orbit, etc.), easy to handle, no/weak sign problem, reproduce bulk properties, extensively applied
 - High-precision chiral forces fixed by few-body data (NN scattering, triton mass, etc.) difficult to solve, severe sign problem, wave-function-matching / perturbative-quantum-MC, many-body forces, RG invariance
- Nuclear binding energies are fundamental constraints to nuclear forces. Still a long way to understand the binding mechanism in *ab initio* calculations (clustering, shell evolution, shapes, etc.).