

第一性原理方法研究原子核 中同位旋对称性破缺

李健国

中国科学院近代物理研究所

合作者:许甫荣,左雍,袁琪,李红蕙,王沛妍、谢前冉,陈诺,李坤昊,王新鹏…

第一性原理框架

第一性原理方法研究原子核中同位旋对称性破缺

现实核力

手征有效场论

N³LO两体力+N²LO三体力

现实核力(NN+3N)

□ 同位旋对称性破缺:接触项和π介子交换项

Isospin breaking contributions to the NN interaction.

Order	Contributions
NLØ ($\nu = 2$)	Pion-mass splitting in 1PE,
	Static Coulomb potential.
NNLØ ($\nu = 3$)	CSB contacts without derivatives,
	Charge dependence of the pion–nucleon coupling constant in 1PE ($\sim \epsilon m_\pi^2 / \Lambda_\chi^2$).
$N^{3}LO(\nu = 4)$	CIB contacts without derivatives,
	Charge dependence of the pion-nucleon coupling constant in 1PE [$\sim e^2/(4\pi)^2$],
	Pion-mass splitting in NLO 2PE,
	Nucleon-mass splitting in NLO 2PE and LS equation,
	$\pi\gamma$ exchange,
	Relativistic corrections to the Coulomb potential ($\sim e^2 Q^2/M_N^2$),
	Further electromagnetic corrections.

Table F.2

Partial-wave LECs for two N²LO fits by the Idaho group [68] using $\Lambda = 500$ and 600 MeV in the regulator function $f(p^r, p)$. Eq. (4.63). The \tilde{C}_i of the zero order partial-wave counterterms given in Eq. (4.39) are in units of 10⁴ GeV⁻²; the C_i , Eq.(4.41), in 10⁴ GeV⁻⁴; and the D_i , D_i , Eq.(E1), in 10⁴ GeV⁻⁶. The last column lists the exponent n of the regulator function, which is applied to the corresponding partial-wave counterterm.

Partial-wave LEC	$\Lambda = 500 \text{ MeV}$	$\Lambda = 600 \text{ MeV}$	n	
\widetilde{C}_{1c}^{pp}	-0.145286	-0.151165	3	
\widetilde{C}_{1n}^{nn}	-0.146285	-0.151467	3	
\tilde{C}_{1s}^{2p}	-0.147167	-0.151745	3	
C150	2.380	2.200	2	
\widehat{D}_{1s_n}	-2.545	-4.890	2	
D150	-16.00	-5.84	2	
C3P0	1.487	1.548	2	
D_{3p_0}	0.245	-0.215	3	
C1p,	0.656	0.790	2	
D1P,	5.25	4.40	2	
C3p.	-0.630	-0.488	2	
D_{3p}	2.35	3.24	4	
\widetilde{C}_{3s}	-0.118972496	-0.116210	3	
C35,	0.760	0.775	2	
\widehat{D}_{3s}	7.00	4.8004	2	
D_{35}	6.55	10.8654	2	
D_{3n}	-2.80	-2.35	2	
C _{35,-30} ,	0.826	0.796	2	
$\widehat{D}_{3s_1,3n_1}$	2.25	2.86	2	
$D_{3S_{1}-3D_{1}}$	6.61	5.58	2	
D1D2	-1.770	-1.764	4	
$D_{3D_{2}}$	-1.46	-1.27	2	
$C_{3p_{2}}^{-2}$	-0.538	-0.548	2	
D3p,	2.295	2.554	2	
$D_{3P_{2}-3P_{2}}$	-0.465	-0.525	4	
Din	5.66	6.26	2.34	

^a $f(p', p) = 0.5\{\exp[-(p'/\Lambda)^4 - (p/\Lambda)^4] + \exp[-(p'/\Lambda)^6 - (p/\Lambda)^6]\}$ is applied.

第一性原理方法研究原子核中同位旋对称性破缺

价空间-介质相似重整化释(VS-IMSRG)与多体微锐 滋滋③

正规乘积后的两体近似(NO2B)包含三体力致应。

第一性原理方法研究原子核中同位旋对称性破缺

价空间-介质相似重整化释(VS-IMSRG)与多体微强 o ?

16O

考健图 jianguo_li@impcas.ac.cn

Page 5/20

3. 通过连续的幺正变换U将正规乘积的哈密顿量脱耦成价空间的有效哈密顿量

 $H_{eff}(s) = U(s)H_{NO}U^{\dagger}(s), (UU^{\dagger} = 1)$

• 流方程: $\frac{d}{ds}H_{eff}(s) = [\eta(s), H(s)]$

• \mathbf{k} \mathbf{k} \mathbf{s} : $\eta(s) = \frac{dU(s)}{ds}U^{\dagger}(s) = -\eta^{\dagger}(s)$

• 幺正变换: $U(s) = e^{\Omega(s)} = e^{\int \eta(s) ds}$

第一性原理方法研究原子核中同位旋对称性破缺

价空间-介质相似重整化释(VS-IMSRG)

第一性原理价空间的介质相似重整化群(Ab initio VS-IMSRG)

Ab initio Valence-Space In-Medium Similarity Renormalization Group

▶ 核心思想

壳模型能算的,VS-IMSRG都可以从现实核力出发进行计算

第一性原理方法研究原子核中同位旋对称性破缺

考健图 jianguo_li@impcas.ac.cn

Page 7/20

T=0

▶粒子物理

- ✓ u-d 夸克质量区别
- √夸克之间的电磁致应

1. p-n 质量区别: m_p = 1.00782503 u, m_n = 1.00866491u

2. p-n 电荷区别:

 $e_p = e, e_n = (-4.3 \pm 7.1) \times 10^{-20} e$

T=1

≻核物理

- √库仑相互作用
- √核子-核子相互作用的区别
 - 电荷对称性破缺 (Charge symmetry breaking--CSB) $V_{nn} V_{pp}$ (同位旋失量)
 - 电荷无关性破缺 (Charge independent breaking--CIB) $2V_{np} (V_{nn} + V_{pp})$ (同位旋社量)

同位旋不守恒力 (Isospin non-conserving force--INC)

√弱束缚致应

探索同位旋对称性破缺的物理机制:库仑力,核力,弱束缚致应…

Large deviation for A=53, T=3/2 quartet. A non-zero *d* term is found.

Y.-H. Zhang et al, Phys. Rev. Lett. 109 (2012) 102501

、缺 李健国 jianguo_li@impcas.ac.cn

镜像能级差异

采用NN(bare)和NN+3N(1.8/2.0)现实核力,利用VS-IMSRG研究镜像核能谱上的破缺

较大的MED主要是由1s1/2轨道占据导致,0d3/2轨道的占据也做出贡献

第一性原理方法研究原子核中同位旋对称性破缺

镜像能级差异--sd壳

⑦计算实验上已发现具有较大MED的镜 像核相似态。

第一性原理能较好地重现实验结果

弯健国

②预测sd壳质子滴线区原子核的低激发 谱。

质子滴线核中的B衰变-同位旋对称性破缺

与近物所徐新星研究员合作

Decay Scheme

 $^{23}\text{Si} \rightarrow ^{23}\text{Al}$

Hao Jian. et al., to be submitted

第一性原理很好的重现²²Al的对称性破缺,²³Al的结果也与新数据符合很好

第一性原理方法研究原子核中同位旋对称性破缺

李健國 jianguo_li@impcas.ac.cn

Comparison for Mirror Asymmetry

 $^{23}\text{F} \rightarrow ^{23}\text{Ne}$

Page 13/20

22Si 秋幻核结构---新幻教

✓ 丰中子原子核中新的双幻核: 22,24O, ^{52,54}Ca

- ✓ 这些幻数结构在丰质子原子 核中还存在吗?
- ✓ 质子滴线原子核中有较强的 同位旋对称性破缺现象 (Thomas-Ehrman shift).

Frédéric Nowacki, Alexandre Obertelli, Alfredo Poves, PPNP 120,103866(2021)

Whether ²²Si exhibits double-magic characters is an intriguing topic.

第一性原理方法研究原子核中同位旋对称性破缺

考健图 jianguo_li@impcas.ac.cn

¹³²Sn

22Si 秋幻核结构---新幻数

N=14附近原子核壳演化

- ✓ ^{22,24}O, ^{24,26}Ne 与 ²⁶Mg的E(2₁⁺)比周围 的其他同位素的E(2₁⁺)都高;
- ✓ N=14 的子壳在O, Ne 和 Mg 链中存在, 但是在Si链中消失了;
- ✓ 随着²⁴O上添加价质子,N=14 的子 壳强度变得更弱

22Si 秋幻核结构---新幻数

- ✓ NN + 3N计算的²⁴Si/²⁴Ne 和²⁶Si/²⁶Mg的 能谱与MED与实验符合,尤其计算的 MED
- ✓ MED值较大,表明此态具有较明显的同位旋对称性破缺,同时此态的1s1/2轨道的占据较大,此²⁴Si的0₂⁺态
- ✓ 计算给出的²²Si 与²²O的E(2₁⁺) 的位置う 別为2.4 与 3.2 MeV, Thomas-Ehrman shift 致友
- ✓ 计算显示²²Si/²²O的0+与2+的组态非常接近
- ✓ 尽管²²Si的E(2₁⁺) 较低,但是与²²O相近, ²²Si依然表现幻数性质。

美国FRIB与日本RIKEN RIB均在计划测量22Si激发态

J.G. Li,* H. H. Li, S. Zhang, Y. M. Xing,* W. Zuo,* Phys. Lett. B 846(1):138197(2023)

第一性原理方法研究原子核中同位旋对称性破缺

同位旋对称性破缺-原子核晕结构-质量测量

与近物所张玉虎与王猛研究员团队合作 兰州重离子加速器储存环精确质量测量

- ✓ 镜像原子核分离能在滴线附近偏离正常曲
 残
- ✓ Al同位素激发态存在明显同位旋对称性破 缺
- ✓ 滴线原子核²⁶P,²⁷P,²⁷S, ³¹An 基态中存在明显 同位旋对称性破缺
- ✓ 同位旋对称性破缺的机制与晕核形成机制 类似
- ✓ 滴残原子核²⁶P,²⁷P,²⁷S, ³¹An具有晕结构

Y. Yu, Y. M. Xing, Y. H. Zhang, M. Wang, X. H. Zhou, J. G. Li, H. H. Li, et al., submitted to PRL

pf-壳层原子核中同位旋对称性破缺

A. Fernández, et al., PLB 823 136784(2021)

J. G. Li, et al., in preparation

21-

第一性原理方法研究原子核中同位旋对称性破缺

考健图 jianguo_li@impcas.ac.cn

Page 18/20

A = 4 (⁴H, ⁴He and ⁴Li) T = 1 state

- ✓ Comparing the calculated spectra of the A = 4 systems , the ground states ⁴Li (T=1), ⁴H (T=1) (2- and 1-) with the ground state of ⁴He (T = 0) and 2⁻ (T=1) excited states.
- ✓ The isospin breaking is mainly caused by the Coulomb force.
- ✓ The energies and widths are both different due to the isospin breaking.
- ✓ The splitting of the T =2 isobaric triplet states.

J.G. Li, N. Michel, W. Zuo and F.R. Xu*, Phys. Rev. C 104, 024319 (2021)

基于第一性原理研究原子核同位旋对称性破缺

- 1. 镜像能级差异: 弱束缚的s_{1/2}轨道的占据是导致较大MED (Thomas-Ehrman份 移)的主要原因
- 2. 预言²²Si是双幻核:较低2+激发能
- 3. 同位旋对称性破缺与晕结构;滴线原子核同位旋对称性破缺-质量精确测量-
- 4. 第一性原理计算精确描述fp-壳原子核同位旋对称性破缺
- 5. 无核芯Gamow壳模型描述轻核中的对称性破缺

请各位老师批评指正!

第一性原理方法研究原子核中同位旋对称性破缺

三体力数范-质量-第一性原理计算

三体力效应在原子核性质中扮演着非常重要的角色

第一性原理方法研究原子核中同位旋对称性破缺

考健国 jianguo_li@impcas.ac.cn

Page 21/60

VS-IMSRG 相互作用 vs USDB 壳模型相互作用

USDB SM

S. Ragnar Stroberg, Scott K. Bogner, Heiko Hergert, Jason D. Holt Annual Review of Nuclear and Particle Science, 69 307-362 (2019)

第一性原理方法研究原子核中同位旋对称性破缺

考健图 jianguo_li@impcas.ac.cn

Page 22/60

1,同位旋对称性破缺的机制

CSB 与 CIB 在GSM 计算中没有包含

S. Zhang, Y. Z. Ma, J. G. Li, B. S. Hu, O. Yuan, Z. H.

Cheng, F. R. Xu. Phys. Lett. B (2022)

w/o coulomb : CSB+CIB part of NN

Model - Basiswavefunction-continuum effectsSM : HO basispartially includedGSM : Berggren basiswell treated

 $H = H_{NN} + H_{CSB+CIB} + H_{Coulomb}$

GSM 的计算量非常大 !!!

库仑力→ 半质子原子核变得弱束缚或者不束缚→ → 波函数延展→ Thomas-Ehrman shift (大的镜像核能级差异)

第一性原理方法研究原子核中同位旋对称性破缺

同位旋对称性破缺的机制

CSB and CIB is not included in the present GSM calculation. $H = H_{NN} + H_{1BC} + H_{2BC}$ $\Delta E = \langle \Psi_{proton} | H_{NN} | \Psi_{proton} \rangle - \langle \Psi_{neutron} | H_{NN} | \Psi_{neutron} \rangle$ 1BC: 单体库 合力的贡献 核态-价质 3

2BC: 两体库仑力贡献 价质子-价质子

 ΔE , 1BC 与 2BC 均对镜像核能级差异(MED) 有贡献

大的镜像核能级差异主要由单体库仑力导致

库仑力→半质子原子核变得弱束缚或者不束缚→ 不同的多体波函数→1BC,2BC,∆E都贡献

第一性原理方法研究原子核中同位旋对称性破缺

Density distributions of valence nucleons are almost same for the mirror state, except for the 3_1^+ in ¹⁸Ne/¹⁸O.

occupations/configuration of the mirror states in ¹⁸Ne/¹⁸O are close

J^{π}	¹⁸ Ne			¹⁸ O		
	$\pi s_{1/2}$	$\pi d_{3/2}$	$\pi d_{5/2}$	$\nu s_{1/2}$	$\nu d_{3/2}$	$\nu d_{5/2}$
0_{1}^{+}	0.108	0.098	1.751	0.142	0.103	1.675
2_{1}^{+}	0.370	0.070	1.537	0.388	0.079	1.481
0_{2}^{+}	1.864	0.004	0.122	1.673	0.008	0.211
3_{1}^{+}	0.999	0.000	1.000	0.997	0.001	0.999
4_{1}^{+}	0.000	0.088	1.905	0.000	0.102	1.888
2^{+}_{2}	0.635	0.009	1.353	0.582	0.013	1.389

J. G. Li*, et al., in preparation

3、质量中的同位旋对称性破缺

Effective proton-neutron interaction in mirror nuclei

Y. M. Xing,¹ Y. F. Luo,^{1,2} K. H. Li,^{1,3} Y. H. Zhang,^{1,2,*} J. G. Li,^{1,†} M. Wang,^{1,2,‡} M. Zhang,^{1,2} T. Liao,^{1,2} and X. Zhou¹

¹Heavy lon Science and Technology Key Lab, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

²School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China ³Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China

第一性原理方法研究原子核中同位旋对称性破缺

Vpn的破却主要由Thomas-Erhman shift致应导致

第一性原理方法研究原子核中同位旋对称性破缺